Long Fiber Reinforced Thermoplastic (LFT) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance, and weather resistance, which has found increasing application in automobile industry. It is of importance to understand the relationship between micro phase, macro-mechanical properties and the structural performance of automobile components. This article evaluates the performance of LFT from the level of material to automobile components. The mechanical properties of LFT were numerically and theoretically predicted to provide instruction for the next material choice. Two typical structural components, namely, car seat frame and bumper beam, were selected to evaluate the performance of LGF/PP compared with other competing materials in terms of mechanical properties and cost. In the case of the same volume, the seat frame of 40% LECT/PP composite material is lighter and cheaper, which is conducive to energy saving and emission reduction. It was shown that the 40% LECT/PA66 car bumper beam had a higher energy absorption ratio, lighter weight, higher specific energy absorption, and advantageous material cost. LFT is a promising candidate for existing automobile components with its performance fulfilling the requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099948 | PMC |
http://dx.doi.org/10.3390/polym14091814 | DOI Listing |
PeerJ
January 2025
Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.
Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.
Biomater Res
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
APESA Pôle valorisation, Montardon, France.
This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.
View Article and Find Full Text PDFHeliyon
January 2025
Jiangxi Guangyuan Chemical Co. Ltd., Ji'an, Jiangxi, 331500, China.
A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!