The influence of processing intumescent bio-based poly(lactic acid) (PLA) composites by injection and fused filament fabrication (FFF) was evaluated. A raw (ANa) and two acidic-activated (AH2 and AH5) montmorillonites were added to the intumescent formulation, composed by lignin and ammonium polyphosphate, in order to evaluate the influence of the strength and the nature (Brønsted or Lewis) of their acidic sites on the fire behavior of the composites. The thermal stability and the volatile thermal degradation products of the composites were assessed. The injected and 3D-printed composites were submitted to cone calorimeter (CC), limit oxygen index (LOI), and UL-94 flammability tests. A similar tendency was observed for the injected and 3D-printed samples. The high density of strong Lewis sites in AH2 showed to be detrimental to the fire-retarding properties. For the CC test, the addition of the intumescent composite reduced the peak of heat released (pHRR) in approximately 49% when compared to neat PLA, while the composites containing ANa and AH5 presented a reduction of at least 54%. However, the addition of AH2 caused a pHRR reduction of around 47%, close to the one of the composite without clay (49%). In the LOI tests, the composites containing ANa and AH5 achieved the best results: 39% and 35%, respectively, for the injected samples, and 35 and 38% for the 3D-printed samples. For the composite containing AH2 the LOI values were 34% and 32% for injected and 3D-printed samples, respectively. Overall, the best performance in the flammability tests was achieved by the composites containing clays with only weak and moderate strength acidic sites (ANa and AH5).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105856PMC
http://dx.doi.org/10.3390/polym14091702DOI Listing

Publication Analysis

Top Keywords

injected 3d-printed
16
pla composites
12
3d-printed samples
12
ana ah5
12
intumescent bio-based
8
composites
8
brønsted lewis
8
acidic sites
8
flammability tests
8
composites ana
8

Similar Publications

Patients with rheumatoid arthritis (RA), an inflammatory illness that affects the synovial joints, have a much worse quality of life. Mostly, oral or injectable formulations are used to treat RA, underscoring the critical need for an innovative medication delivery method to enhance therapeutic outcomes and patient compliance. The present study integrated 3D bioprinting and electrospinning technologies to create a unique double-layered transdermal patch (TDDP) for the treatment of RA.

View Article and Find Full Text PDF

Effective drug delivery to the posterior segment of the eye remains a challenge owing to the limitations of conventional methods such as intravitreal injections, which are associated with significant side effects. This study explored the use of hollow microneedles (HMNs) for localized intrascleral drug delivery as a minimally invasive alternative. Stainless steel HMNs with bevel angles of 30°, 45°, 60°, and 75° were fabricated using wire electron discharge machining.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the primary causes of vision impairment and blindness worldwide. The current treatment for these diseases is an intravitreal injection of anti-VEGF agents, which are costly and require frequent injections. Implants can be used to sustain the release of drugs and minimize side effects.

View Article and Find Full Text PDF

Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination.

View Article and Find Full Text PDF

Recent advances in platelet-rich plasma and its derivatives: therapeutic agents for tissue engineering and regenerative medicine.

Prog Biomed Eng (Bristol)

January 2024

Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.

Platelet rich plasma (PRP) is a suspension of bioactive factors and chemokine enriched plasma. Platelets are a distinctive source of membrane bound and soluble proteins that are released upon their activation. The higher count of platelets renders PRP with an array of tissue regenerative abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!