Familial hypocalciuric hypercalcemia (FHH) is a mostly benign condition of elevated calcium and PTH levels based on a hyposensitive calcium sensing receptor () in FHH 1 or its downstream regulatory pathway in FHH2 and FHH3. In children, adolescents and young adults with FHH the main challenge is to distinguish the condition from primary hyperparathyroidism and thereby to avoid unnecessary treatments including parathyroidectomy. However, inheritance of FHH may result in neonatal hyperparathyroidism (NHPT) or neonatal severe hyperparathyroidism (NSHPT), conditions with high morbidity, and in the latter even high mortality. This review focuses on the genetic and pathophysiological framework that leads to the severe neonatal form, gives recommendations for counselling and summarizes treatment options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100033PMC
http://dx.doi.org/10.3390/jcm11092595DOI Listing

Publication Analysis

Top Keywords

calcium sensing
8
familial hypocalciuric
8
hypocalciuric hypercalcemia
8
hypercalcemia fhh
8
fhh
5
disorders calcium
4
sensing signaling
4
signaling pathway
4
pathway familial
4
fhh life
4

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.

View Article and Find Full Text PDF

Comparing the efficacy of serotonin and EGTA on postpartum hypocalcemia.

J Dairy Sci

January 2025

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53701. Electronic address:

Inducing a transient state of hypocalcemia prepartum mobilizes stored calcium (Ca) before the abrupt demand for Ca at parturition thus more tightly regulating postpartum hypocalcemia. Prepartum transient hypocalcemia can be achieved through intravenous infusions of either the precursor to serotonin, 5-hydroxy-tryptophan (5HTP) or a Ca chelating agent, ethylene-glycol-tetraacetic acid (EGTA). This study aimed to compare the ability of 5HTP and EGTA treatments to prevent postpartum hypocalcemia.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!