Mobile health technologies are gaining importance in clinical decision-making. With the capability to monitor the patient's heart rhythm, they have the potential to reduce the time to confirm a diagnosis and therefore are useful in patients eligible for screening of atrial fibrillation as well as in patients with symptoms without documented symptom rhythm correlation. Such is crucial to enable an adequate arrhythmia management including the possibility of a catheter ablation. After ablation, wearables can help to search for recurrences, in symptomatic as well as in asymptomatic patients. Furthermore, those devices can be used to search for concomitant arrhythmias and have the potential to help improving the short- and long-term patient management. The type of wearable as well as the adequate technology has to be chosen carefully for every situation and every individual patient, keeping different aspects in mind. This review aims to describe and to elaborate a potential workflow for the role of wearables for cardiac rhythm monitoring regarding detection and management of arrhythmias before and after cardiac electrophysiological procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100087PMC
http://dx.doi.org/10.3390/jcm11092428DOI Listing

Publication Analysis

Top Keywords

cardiac rhythm
8
rhythm monitoring
8
catheter ablation
8
monitoring wearables
4
wearables clinical
4
clinical guidance
4
guidance catheter
4
ablation mobile
4
mobile health
4
health technologies
4

Similar Publications

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

Surgical and Ablation Therapies for Atrial Appendage Tachycardia in Children.

JACC Clin Electrophysiol

December 2024

Department of Pediatric Cardiology, Heart Center, First Hospital of Tsinghua University (Beijing Huaxin Hospital), Chaoyang District, Beijing, China.

Background: Atrial tachycardia (AT) originate from the atrial appendage present unique clinical challenges in pediatrics. It is typically persistent, frequently leading to tachycardiomyopathy, and poses significant treatment difficulties.

Objectives: This study aimed to collate and analyze the clinical characteristics and therapeutic outcomes of radiofrequency ablation (RFCA) and with atrial appendage resection for the treatment of AT originating from the atrial appendages in pediatric patients.

View Article and Find Full Text PDF

Left atrial appendage occlusion (LAAO) has become an important therapeutic target for stroke prevention in patients with nonvalvular atrial fibrillation. Over the past 2 decades, several advancements in LAAO devices (percutaneous and surgical) have been made for stroke prevention and arrhythmia therapy. However, there are several unanswered questions regarding optimal patient selection, the preferred LAAO approach and device, the management of periprocedural and postprocedural complications, including pericardial effusion, device-related thrombus, and device leaks.

View Article and Find Full Text PDF

Subclavian Ansae Stimulation on Cardiac Hemodynamics and Electrophysiology in Atrial Fibrillation: A Target for Sympathetic Neuromodulation.

JACC Clin Electrophysiol

December 2024

St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:

Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.

Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!