Flow cytometry technique (FC) is a standard diagnostic tool for diagnostics of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) assessing the immunophenotype of blast cells. BCP-ALL is often associated with underlying genetic aberrations, that have evidenced prognostic significance and can impact the disease outcome. Since the determination of patient prognosis is already important at the initial phase of BCP-ALL diagnostics, we aimed to reveal specific genetic aberrations by finding specific multiple antigen expression patterns with FC immunophenotyping. The FC immunophenotype data were analysed using machine learning methods (gradient boosting, decision trees, classification rules). The obtained results were verified with the use of repeated cross-validation. The t(12;21)/ETV6-RUNX1 aberration occurs more often when blasts present high expression of CD10, CD38, low CD34, CD45 and specific low expression of CD81. The t(v;11q23)/KMT2A is associated with positive NG2 expression and low CD10, CD34, TdT and CD24. Hyperdiploidy is associated with CD123, CD66c and CD34 expression on blast cells. In turn, high expression of CD81, low expression of CD45, CD22 and lack of CD123 and NG2 indicates that none of the studied aberrations is present. Detecting aberrations in pediatric BCP-ALL, based on the expression of multiple markers, can be done with decent efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100578PMC
http://dx.doi.org/10.3390/jcm11092281DOI Listing

Publication Analysis

Top Keywords

genetic aberrations
12
expression
9
machine learning
8
antigen expression
8
b-cell precursor
8
precursor acute
8
acute lymphoblastic
8
blast cells
8
high expression
8
low expression
8

Similar Publications

Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.

View Article and Find Full Text PDF

Splicing to orchestrate cell fate.

Mol Ther Nucleic Acids

March 2025

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.

Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.

Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!