Despite the recent promising results of MDMA (3,4-methylenedioxy-methamphetamine) as a psychotherapeutic agent and its history of misuse, little is known about its molecular mode of action. MDMA enhances monoaminergic neurotransmission in the brain and its valuable psychoactive effects are associated to a dual action on the 5-HT transporter (SERT). This drug inhibits the reuptake of 5-HT (serotonin) and reverses its flow, acting as a substrate for the SERT, which possesses a central binding site (S1) for antidepressants as well as an allosteric (S2) one. Previously, we characterized the spatial binding requirements for MDMA at S1. Here, we propose a structure-based mechanistic model of MDMA occupation and translocation across both binding sites, applying ensemble binding space analyses, electrostatic complementarity, and Monte Carlo energy perturbation theory. Computed results were correlated with experimental data (r = 0.93 and 0.86 for S1 and S2, respectively). Simulations on all hSERT available structures with Gibbs free energy estimations (ΔG) revealed a favourable and pervasive dual binding mode for MDMA at S2, i.e., adopting either a 5-HT or an escitalopram-like orientation. Intermediate ligand conformations were identified within the allosteric site and between the two sites, outlining an internalization pathway for MDMA. Among the strongest and more frequent interactions were salt bridges with Glu494 and Asp328, a H-bond with Thr497, a π-π with Phe556, and a cation-π with Arg104. Similitudes and differences with the allosteric binding of 5-HT and antidepressants suggest that MDMA may have a distinctive chemotype. Thus, our models may provide a framework for future virtual screening studies and pharmaceutical design and to develop hSERT allosteric compounds with a unique psychoactive MDMA-like profile.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099856 | PMC |
http://dx.doi.org/10.3390/molecules27092977 | DOI Listing |
Viruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
DPP4 is an enzyme with multiple natural substrates and probable involvement in various mechanisms. It constitutes a drug target for the treatment of diabetes II, although, also related to other disorders. While a number of drugs with competitive inhibitory action and covalent binding capacity are available, undesired side effects exist partly attributed to drug kinetics, and research for finding novel, potent, and safer compounds continues.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 19, 040 01 Košice, Slovakia.
Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.
View Article and Find Full Text PDFLife (Basel)
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!