Sensitive and accurate detection of specific metal ions is important for sensor development and can advance analytical science and support environmental and human medical examinations. Fluorescent proteins (FPs) can be quenched by specific metal ions and spectroscopically show a unique fluorescence-quenching sensitivity, suggesting their potential application as FP-based metal biosensors. Since the characteristics of the fluorescence quenching are difficult to predict, spectroscopic analysis of new FPs is important for the development of FP-based biosensors. Here we reported the spectroscopic and structural analysis of metal-induced fluorescence quenching of the photoconvertible fluorescent protein DendFP. The spectroscopic analysis showed that Fe, Fe, and Cu significantly reduced the fluorescence emission of DendFP. The metal titration experiments showed that the dissociation constants () of Fe, Fe, and Cu for DendFP were 24.59, 41.66, and 137.18 μM, respectively. The tetrameric interface of DendFP, which the metal ions cannot bind to, was analyzed. Structural comparison of the metal-binding sites of DendFP with those of iq-mEmerald and Dronpa suggested that quenchable DendFP has a unique metal-binding site on the β-barrel that does not utilize the histidine pair for metal binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104182PMC
http://dx.doi.org/10.3390/molecules27092922DOI Listing

Publication Analysis

Top Keywords

fluorescence quenching
12
metal ions
12
metal-induced fluorescence
8
quenching photoconvertible
8
photoconvertible fluorescent
8
fluorescent protein
8
protein dendfp
8
specific metal
8
spectroscopic analysis
8
dendfp metal
8

Similar Publications

Three different two dimensional Cd(II)-based metal-organic frameworks (MOFs) have been synthesized by utilizing same N,N'-donor ligand and three different functionalized dicarboxylate linkers namely isophthalate, 5-nitroisophthalate and 5-hydroxyisophthalate for compound 1, 2 and 3 respectively. The compounds that are isoreticular bi-walled 2D frameworks, show dual fluorescence emission spectra for their π-π* and n-π* excitation. Compound 1 is consists of unsubstituted bridging isophthalate whereas 2 and 3 are made with bridging isophthalate that are substituted by electron withdrawing -NO2 group and electron donating -OH group respectively.

View Article and Find Full Text PDF

Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.

View Article and Find Full Text PDF

Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03.

Int J Biol Macromol

December 2024

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India. Electronic address:

Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition.

View Article and Find Full Text PDF

Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility.

View Article and Find Full Text PDF

In this work, a new dual-signal fluorescence strategy based on nano-gold molecular beacon (MB) and in-situ generated silver nano-clusters (NCs) coupled with multiple amplification technique was developed for sensitive detection of miRNA (let-7b). miRNA can recognize both hairpin probe (HP) and auxiliary DNA, inducing dual-cycle amplification-process to release plenty of DNA S2. As the report probe carboxyfluorescein (FAM) was modified on Au nanoparticles (AuNPs), the fluorescent signal was quenched due to the fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!