https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35566082&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3556608220220716
1420-30492792022Apr23Molecules (Basel, Switzerland)MoleculesSkeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate.273010.3390/molecules27092730The rotational spectrum of phenyl acetate, CH3COOC6H5, is measured using a free jet absorption millimeter-wave spectrometer in the range from 60 to 78 GHz and two pulsed jet Fourier transform microwave spectrometers covering a total frequency range from 2 to 26.5 GHz. The features of two large amplitude motions, the methyl group internal rotation and the skeletal torsion of the CH3COO group with respect to the phenyl ring C6H5 (tilted at about 70°), characterize the spectrum. The vibrational ground state is split into four widely spaced sublevels, labeled as A0, E0, A1, and E1, each of them with its set of rotational transitions and with additional interstate transitions. A global fit of the line frequencies of the four sublevels leads to the determination of 51 spectroscopic parameters, including the ΔEA0/A1 and ΔEE0/E1 vibrational splittings of ~36.4 and ~33.5 GHz, respectively. The V3 barrier to methyl internal rotation (~136 cm-1) and the skeletal torsion B2 barrier to the orthogonality of the two planes (~68 cm-1) are deduced.FerresLynnLInstitute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany.EvangelistiLucaL0000-0001-9119-1057Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.MarisAssimoA0000-0003-2644-0023Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.MelandriSoniaS0000-0002-0410-5833Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.CaminatiWaltherWDipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.StahlWolfgangWInstitute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany.NguyenHa Vinh LamHVL0000-0002-5493-8905Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France.Institut Universitaire de France (IUF), F-75231 Paris, France.engJournal Article20220423
SwitzerlandMolecules1009640091420-3049IMinternal rotationlarge amplitude motionsrotational spectroscopyskeletal motion tunnelingThe authors declare no conflict of interest.
20223272022417202241920225141232022515602022515612022423epublish35566082PMC910539110.3390/molecules27092730molecules27092730Rajabi F., Luque R. Solventless Acetylation of Alcohols and Phenols Catalyzed by Supported Iron Oxide Nanoparticles. Catal. Commun. 2014;45:129–132. doi: 10.1016/j.catcom.2013.11.003.10.1016/j.catcom.2013.11.003González-Núñez M.E., Mello R., Olmos A., Asensio G. Baeyer−Villiger Oxidation with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. J. Org. Chem. 2005;70:10879–10882. doi: 10.1021/jo051614v.10.1021/jo051614v16356014Seo S., Taylor J.B., Greaney M.F. Protodecarboxylation of Benzoic Acids under Radical Conditions. Chem. Commun. 2012;48:8270–8272. doi: 10.1039/c2cc33306f.10.1039/c2cc33306f22705974Samid D., Shack S., Sherman L.T. Phenylacetate: A Novel Nontoxic Inducer of Tumor Cell Differentiation. Cancer Res. 1992;52:1988–1992.1372534Nguyen H.V.L., Kleiner I., Shipman S.T., Mae Y., Hirose K., Hatanaka S., Kobayashi K. Extension of the Measurement, Assignment, and Fit of the Rotational Spectrum of the Two-Top Molecule Methyl Acetate. J. Mol. Spectrosc. 2014;299:17–21. doi: 10.1016/j.jms.2014.03.012.10.1016/j.jms.2014.03.012Jelisavac D., Cortés-Gómez D.C., Nguyen H.V.L., Sutikdja L.W., Stahl W., Kleiner I. The Microwave Spectrum of the Trans Conformer of Ethyl Acetate. J. Mol. Spectrosc. 2009;257:111. doi: 10.1016/j.jms.2009.07.002.10.1016/j.jms.2009.07.002Sutikdja L.W., Stahl W., Sironneau V., Nguyen H.V.L., Kleiner I. Structure and Internal Dynamics of n-Propyl Acetate Studied by Microwave Spectroscopy and Quantum Chemistry. Chem. Phys. Lett. 2016;663:145–149. doi: 10.1016/j.cplett.2016.09.062.10.1016/j.cplett.2016.09.062Attig T., Sutikdja L.W., Kannengießer R., Kleiner I., Stahl W. The Microwave Spectrum of n-Butyl Acetate. J. Mol. Spectrosc. 2013;284–285:8–15. doi: 10.1016/j.jms.2013.02.003.10.1016/j.jms.2013.02.003Attig T., Kannengießer R., Kleiner I., Stahl W. Conformational Analysis of n-Pentyl Acetate Using Microwave Spectroscopy. J. Mol. Spectrosc. 2013;290:24–30. doi: 10.1016/j.jms.2013.07.001.10.1016/j.jms.2013.07.001Attig T., Kannengießer R., Kleiner I., Stahl W. The Microwave Spectrum of n-Hexyl Acetate and Structural Aspects of n-Alkyl Acetates. J. Mol. Spectrosc. 2014;298:47. doi: 10.1016/j.jms.2014.02.008.10.1016/j.jms.2014.02.008Velino B., Maris A., Melandri S., Caminati W. Millimeter Wave Free-Jet Spectrum of Vinyl Acetate. J. Mol. Spectrosc. 2009;256:228–231. doi: 10.1016/j.jms.2009.04.013.10.1016/j.jms.2009.04.013Nguyen H.V.L., Jabri A., Van V., Stahl W. Methyl Internal Rotation in the Microwave Spectrum of Vinyl Acetate. J. Phys. Chem. A. 2014;118:12130–12136. doi: 10.1021/jp5075829.10.1021/jp507582925423450Jabri A., Van V., Nguyen H.V.L., Stahl W., Kleiner I. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy. ChemPhysChem. 2016;17:2660–2665. doi: 10.1002/cphc.201600265.10.1002/cphc.20160026527214342Nguyen H.V.L., Stahl W. The Microwave Spectrum of Isopropenyl Acetate: An Asymmetric Molecule with Two Internal Rotors. J. Mol. Spectrosc. 2010;264:120–124. doi: 10.1016/j.jms.2010.10.002.10.1016/j.jms.2010.10.002Reinhold B., Finneran I.A., Shipman S.T. Room Temperature Chirped-Pulse Fourier Transform Microwave Spectroscopy of Anisole. J. Mol. Spectrosc. 2011;270:89–97. doi: 10.1016/j.jms.2011.10.002.10.1016/j.jms.2011.10.002Ferres L., Stahl W., Nguyen H.V.L. The Molecular Structure of Phenetole Studied by Microwave Spectroscopy and Quantum Chemical Calculations. Mol. Phys. 2016;114:2788–2793. doi: 10.1080/00268976.2016.1177217.10.1080/00268976.2016.1177217Melandri S., Giuliano B.M., Maris A., Favero L.B., Ottaviani P., Velino B., Caminati W. Methylsalicylate: A Rotational Spectroscopy Study. J. Phys. Chem. A. 2007;111:9076–9079. doi: 10.1021/jp0723970.10.1021/jp072397017722889Lei J., Zhang J., Feng G., Grabow J.-U., Gou Q. Conformational Preference Determined by Inequivalent n-Pairs: Rotational Studies on Acetophenone and its Monohydrate. Phys. Chem. Chem. Phys. 2019;21:22888–22894. doi: 10.1039/C9CP03904J.10.1039/C9CP03904J31595918Utzat K.A., Bohn R.K., Montgomery J.A., Jr., Michels H.H., Caminati W. Rotational Spectrum, Tunneling Motions, and Potential Barriers of Benzyl Alcohol. J. Phys. Chem. A. 2010;114:6913–6916. doi: 10.1021/jp102903p.10.1021/jp102903p20524674Evangelisti L., Caminati W. Modeling the Internal Rotation Tunnelling in Benzyl Alcohol by Ring Fluorination: The Rotational Spectrum of 3,5-Difluorobenzyl Alcohol. Chem. Phys. Lett. 2019;737S:100004. doi: 10.1016/j.cpletx.2018.100004.10.1016/j.cpletx.2018.100004Godfrey P.D., Hatherley L.D., Brown R.D. The Shapes of Neurotransmitters by Millimeter-Wave Spectroscopy: 2-Phenylethylamine. J. Am. Chem. Soc. 1995;117:8204. doi: 10.1021/ja00136a019.10.1021/ja00136a019López J.C., Cortijo V., Blanco S., Alonso J.L. Conformational Study of 2-Phenylethylamine by Molecular-Beam Fourier Transform Microwave Spectroscopy. Phys. Chem. Chem. Phys. 2007;9:4521–4527. doi: 10.1039/b705614a.10.1039/b705614a17690777Cabezas C., Varela M., Caminati W., Mata S., López J.C., Alonso J.L. The Two Conformers of Acetanilide Unraveled Using LA-MB-FTMW Spectroscopy. J. Mol. Spectrosc. 2011;268:42–46. doi: 10.1016/j.jms.2011.03.033.10.1016/j.jms.2011.03.033Aviles Moreno J.-R., Petitprez D., Huet T.R. The Conformational Flexibility in N-Phenylformamide: An Ab Initio Approach Supported by Microwave Spectroscopy. Chem. Phys. Lett. 2006;419:411–416. doi: 10.1016/j.cplett.2005.11.100.10.1016/j.cplett.2005.11.100Ferres L., Mouhib H., Stahl W., Schwell M., Nguyen H.V.L. Molecular Structure and Ring Tunneling of Phenyl Formate as Observed by Microwave Spectroscopy and Quantum Chemistry. J. Mol. Spectrosc. 2017;337:59–64. doi: 10.1016/j.jms.2017.04.017.10.1016/j.jms.2017.04.017Cleeton C.E., Williams N.H. Electromagnetic Waves of 1.1 cm Wave-Length and the Absorption Spectrum of Ammonia. Phys. Rev. 1934;45:234. doi: 10.1103/PhysRev.45.234.10.1103/PhysRev.45.234Nguyen H.V.L., Gulaczyk I., Kręglewski M., Kleiner I. Large Amplitude Inversion Tunneling Motion in Ammonia, Methylamine, Hydrazine, and Secondary Amines: From Structure Determination to Coordination Chemistry. Coord. Chem. Rev. 2021;436:213797. doi: 10.1016/j.ccr.2021.213797.10.1016/j.ccr.2021.213797Pickett H.M. The Fitting and Prediction of Vibration-Rotation Spectra with Spin Interactions. J. Mol. Spectrosc. 1991;148:371–377. doi: 10.1016/0022-2852(91)90393-O.10.1016/0022-2852(91)90393-OHerbers S., Zingsheim O., Nguyen H.V.L., Bonah L., Heyne B., Wehres N., Schlemmer S. Internal Rotation Arena: Program Performances on the Low Barrier Problem of 4-Methylacetophenone. J. Chem. Phys. 2021;155:224302. doi: 10.1063/5.0070298.10.1063/5.007029834911311Hartwig H., Dreizler H. The Microwave Spectrum of trans-2,3-Dimethyloxirane in Torsional Excited States. Z. Naturforsch. 1996;51a:923–932. doi: 10.1515/zna-1996-0807.10.1515/zna-1996-0807Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian Inc.; Wallingford, CT, USA: 2016. Gaussian 16, Revision B.01.Moran D., Simmonett A.C., Leach F.E., Allen W.D., Schleyer P.v.R., Schaefer H.F. Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar. J. Am. Chem. Soc. 2006;128:9342–9343. doi: 10.1021/ja0630285.10.1021/ja063028516848464Schlegel H.B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982;3:214–218. doi: 10.1002/jcc.540030212.10.1002/jcc.540030212Melandri S., Caminati W., Favero L.B., Millemaggi A., Favero P.G. A Microwave Free Jet Absorption Spectrometer and its First Applications. J. Mol. Struct. 1995;352–353:253–258. doi: 10.1016/0022-2860(94)08516-K.10.1016/0022-2860(94)08516-KMelandri S., Maccaferri G., Maris A., Millemaggi A., Caminati W., Favero P.G. Observation of the Rotational Spectra of van der Waals Complexes by Free Jet Absorption Millimeter Wave Spectroscopy: Pyridine-Argon. Chem. Phys. Lett. 1996;261:267–271. doi: 10.1016/0009-2614(96)00977-3.10.1016/0009-2614(96)00977-3Calabrese C., Maris A., Evangelisti L., Favero L.B., Melandri S., Caminati W. Keto–Enol Tautomerism and Conformational Landscape of 1,3-Cyclohexanedione from Its Free Jet Millimeter-Wave Absorption Spectrum. J. Phys. Chem. A. 2013;117:13712–13718. doi: 10.1021/jp4078097.10.1021/jp407809724015670Evangelisti L., Maris A., Melandri S., Caminati W. Internal Dynamics in Phenylacetate, Poster communication D42. 22nd ed. International Conference on High Resolution Molecular Spectroscopy; Praha, Czech Republic: 2012.Caminati W., Millemaggi A., Alonso J.L., Lesarri A., Lopez J.C., Mata S. Molecular Beam Fourier Transform Microwave Spectrum of the Dimethylether–Xenon Complex: Tunnelling Splitting and 131Xe Quadrupole Coupling Constants. Chem. Phys. Lett. 2004;392:1–6. doi: 10.1016/j.cplett.2004.05.038.10.1016/j.cplett.2004.05.038Grabow J.-U., Stahl W., Dreizler H. A Multioctave Coaxially Oriented Beam-resonator Arrangement Fourier-Transform Microwave Spectrometer. Rev. Sci Instrum. 1996;67:4072–4084. doi: 10.1063/1.1147553.10.1063/1.1147553Grabow J.-U., Stahl W. A Pulsed Molecular Beam Microwave Fourier Transform Spectrometer with Parallel Molecular Beam and Resonator Axes. Z. Naturforsch. 1990;45a:1043–1044. doi: 10.1515/zna-1990-0817.10.1515/zna-1990-0817Zhao Y., Nguyen H.V.L., Stahl W., Hougen J.T. Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone. J. Mol. Spectrosc. 2015;318:91–100. doi: 10.1016/j.jms.2015.10.005.10.1016/j.jms.2015.10.005Herbers S., Fritz S.M., Mishra P., Nguyen H.V.L., Zwier T.S. Local and Global Approaches to Treat the Torsional Barriers of 4-Methylacetophenone Using Microwave Spectroscopy. J. Chem. Phys. 2020;152:074301. doi: 10.1063/1.5142401.10.1063/1.514240132087663Evangelisti L., Favero L.B., Maris A., Melandri S., Vega-Toribio A., Lesarri A., Caminati W. Rotational Spectrum of Trifluoroacetone. J. Mol. Spectrosc. 2010;259:65–69. doi: 10.1016/j.jms.2009.11.004.10.1016/j.jms.2009.11.004Maris A., Calabrese C., Favero L.B., Evangelisti L., Usabiaga I., Mariotti S., Codella C., Podio L., Balucani N., Ceccarelli C., et al. Laboratory Measurements and Astronomical Search for Thioacetamide. ACS Earth Space Chem. 2019;21:1537–1549. doi: 10.1021/acsearthspacechem.9b00084.10.1021/acsearthspacechem.9b00084Maris A., Melandri S., Evangelisti L., Vigorito A., Sigismondi S., Calabrese C., Usabiaga I. Structure and Dynamics of Methacrylamide, a Computational and Free-Jet Rotational Spectroscopic Study. J. Mol. Struct. 2022;1248:131391. doi: 10.1016/j.molstruc.2021.131391.10.1016/j.molstruc.2021.131391Herschbach D.R. Tables of Mathieu Integrals for the Internal Rotation Problem. J. Chem. Phys. 1957;27:975. doi: 10.1063/1.1743897.10.1063/1.1743897Meyer R. Flexible Models for Intramolecular Motion, a Versatile Treatment and its Application to Glyoxal. J. Mol. Spectrosc. 1979;76:266–300. doi: 10.1016/0022-2852(79)90230-3.10.1016/0022-2852(79)90230-3Ohashi N., Hougen J.T., Suenram R., Lovas F.J., Kawashima Y., Fujitake M., Pyka J. Analysis and Fit of the Fourier-Transform Microwave Spectrum of the Two-Top Molecule N-Methylacetamide. J. Mol. Spectrosc. 2004;227:28–42. doi: 10.1016/j.jms.2004.04.017.10.1016/j.jms.2004.04.017Mélan J., Khemissi S., Nguyen H.V.L. Steric Effects on Two Inequivalent Methyl Internal Rotations of 3,4-Dimethylfluorobenzene. Spectrochim. Acta A. 2021;253:119564. doi: 10.1016/j.saa.2021.119564.10.1016/j.saa.2021.11956433621937Khemissi S., Pérez Salvador A., Nguyen H.V.L. Large Amplitude Motions in 2,3-Dimethylfluorobenzene: Steric Effects Failing to Interpret Hindered Methyl Torsion. J. Phys. Chem. A. 2021;125:8542–8548. doi: 10.1021/acs.jpca.1c05093.10.1021/acs.jpca.1c0509334553946Nguyen T., Stahl W., Nguyen H.V.L., Kleiner I. Local Versus Global Approaches to Treat Two Equivalent Methyl Internal Rotations and 14N Nuclear Quadrupole Coupling of 2,5-Dimethylpyrrole. J. Chem. Phys. 2021;154:204304. doi: 10.1063/5.0049418.10.1063/5.004941834241162Nguyen H.V.L., Kleiner I. Understanding (Coupled) Large Amplitude Motions: The Interplay of Microwave Spectroscopy, Spectral Modeling, and Quantum Chemistry. Phys. Sci. Rev. 2020:20200037. doi: 10.1515/psr-2020-0037.10.1515/psr-2020-0037Kleiner I., Hougen J.T. A Hybrid Program for Fitting Rotationally Resolved Spectra of Floppy Molecules with One Large-Amplitude Rotatory Motion and One Large-Amplitude Oscillatory Motion. J. Phys. Chem. A. 2015;119:10664–10676. doi: 10.1021/acs.jpca.5b08437.10.1021/acs.jpca.5b08437PMC475868826439709