The A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer's disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-β extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A adenosine receptors in AD animal and human studies and reports the state of the art of A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood-brain barrier in the discovery of new agents for treating CNS disorders. Considering that A receptor antagonist istradefylline is already commercially available for Parkinson's disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102440PMC
http://dx.doi.org/10.3390/molecules27092680DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
16
receptor antagonists
12
alzheimer's disease
8
adenosine receptors
8
crucial role
8
adenosine
6
receptor
5
pathophysiological role
4
role medicinal
4
medicinal chemistry
4

Similar Publications

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Discovery of Selenium-Containing Derivatives as Potent and Orally Bioavailable GLP-1R Agonists.

J Med Chem

January 2025

Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold.

View Article and Find Full Text PDF

Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate (ATP) and adenosine (ADO) tightly regulate neutrophils, we studied whether the ATP and ADO levels in the blood of newborn mice could impair the function of their neutrophils.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!