When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101290PMC
http://dx.doi.org/10.3390/nu14091925DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
24
beneficial effects
8
effects phenolic
8
compounds
8
content phenolic
8
absorption metabolism
8
phenolic
6
variability beneficial
4
compounds review
4
review analysing
4

Similar Publications

The chemical investigation of the fruits of Garcinia schomburgkiana growing in Vietnam led to the isolation of a new anofinic acid derivative, 5-hydroxy-8-methoxyanofinic acid (1), a new xanthone, xanthoschome C (2), and a known synthetic phenolic analogue, 4-(2-hydroxybenzyl)-2-(4-hydroxybenzyl) phenol (3), along with seven known xanthones (4-10). The structures of all isolated compounds were determined using spectroscopic techniques (NMR and MS), in conjunction with comparison to existing literature data. All isolated compounds were assessed for their α-glucosidase inhibitory activity and showed significant inhibition, with IC50 values ranging from 12.

View Article and Find Full Text PDF

[Allelopathy: chemical communication between plants].

Biol Aujourdhui

January 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

Today, weed control in agricultural systems is largely based on the use of synthetic pesticides. However, the use of these compounds is increasingly controversial among farmers and consumers, who point to their harmful properties for human health and the environment. In this context, the development of eco-friendly agricultural approaches and practices is becoming essential, and allelopathy represents a promising solution.

View Article and Find Full Text PDF

Unlabelled: In this study, the changes in the physicochemical properties, color stability, and amino acid composition of cemen paste (CP) produced by adjusting to different pH levels (3.0, 4.0, 5.

View Article and Find Full Text PDF

Oven roasting effects on the physicochemical and chemosensory characteristics of hemp seeds ( L.).

J Food Sci Technol

February 2025

Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea.

Physicochemical properties and flavor characteristics of hemp seeds (HS) were analyzed by roasting temperature (140 °C, 160 °C, 180 °C) and time (initial, 3, 6, 9, 12 min). HS with roasting showed a lightness () with increasing roasting time. Total flavonoid content (TFC) decreased significantly with roasting compared to initial, and total phenolic content (TPC) tended to decrease with increasing roasting time at low temperatures (140 °C), but relatively high temperatures (160 °C and 180 °C), TPC increased significantly with increasing roasting time.

View Article and Find Full Text PDF

An introduction to antibacterial materials in composite restorations.

JADA Found Sci

October 2024

Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.

The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!