In the context of widespread public and political concern around the use of animals in research, we sought to examine the scientific, ethical and economic arguments around the replacement of animals with New Approach Methodologies (NAMs) and to situate this within a regulatory context. We also analyzed the extent to which animal replacement aligns with British public and policymakers' priorities and explored global progress towards this outcome. The global context is especially relevant given the international nature of regulatory guidance on the safety testing of new medicines. We used a range of evidence to analyze this area, including scientific papers; expert economic analysis; public opinion polls and the Hansard of the UK Parliament. We found evidence indicating that replacing animals with NAMs would benefit animal welfare, public health and the economy. The majority of the British public is in favor of efforts to replace animals and focusing on this area would help to support the British Government's current policy priorities. We believe that this evidence underlines the need for strong action from policymakers to accelerate the transition from animal experiments to NAMs. The specific measure we suggest is to introduce a new ministerial position to coordinate and accelerate the replacement of animals with NAMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100373 | PMC |
http://dx.doi.org/10.3390/ani12091173 | DOI Listing |
Ophthalmol Ther
January 2025
Qvision, Department of Ophthalmology of VITHAS Almería Hospital, 04120, Almería, Spain.
The prevailing narrative in scientific literature has long overemphasized the role of ocular axes in intraocular lens (IOL) implantation, perpetuating misconceptions that have led to unnecessary exclusions of patients. Historical assumptions, coupled with inconsistent terminology and statistical inaccuracies, have muddled clinical decision-making. This review delves into these misconceptions, offering a critical reassessment of their relevance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, New Delhi, 110017, India.
The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America.
Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.
View Article and Find Full Text PDFJ Dev Biol
December 2024
Comparative Histolab Padova, 35100 Padova, Italy.
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!