Telomeres are DNA-protein complexes that protect eukaryotic chromosome ends from being erroneously repaired by the DNA damage repair system, and the length of telomeres indicates the replicative potential of the cell. Telomeres shorten during each division of the cell, resulting in telomeric damage and replicative senescence. Tumor cells tend to ensure cell proliferation potential and genomic stability by activating telomere maintenance mechanisms (TMMs) for telomere lengthening. The alternative lengthening of telomeres (ALT) pathway is the most frequently activated TMM in tumors of mesenchymal and neuroepithelial origin, and ALT also frequently occurs during experimental cellular immortalization of mesenchymal cells. ALT is a process that relies on homologous recombination (HR) to elongate telomeres. However, some processes in the ALT mechanism remain poorly understood. Here, we review the most recent understanding of ALT mechanisms and processes, which may help us to better understand how the ALT pathway is activated in cancer cells and determine the potential therapeutic targets in ALT pathway-stabilized tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105334 | PMC |
http://dx.doi.org/10.3390/cancers14092194 | DOI Listing |
Cureus
December 2024
Rehabilitation Medicine, Spine Center, Bologna, ITA.
Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).
View Article and Find Full Text PDFFEBS Lett
January 2025
Dipartimento di Scienze, Università degli Studi "Roma Tre", Italy.
Some tumors employ a mechanism called alternative lengthening of telomeres (ALT) to counteract telomere shortening-induced replicative senescence. Several hallmarks are used to identify cell lines and tumors as ALT-positive. Here, we analyzed a panel of ALT-positive and -negative cancer cell lines to investigate the specificity and sensibility of ALT-associated markers.
View Article and Find Full Text PDFJ Plast Reconstr Aesthet Surg
November 2024
Service de Chirurgie Plastique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris, Paris, France.
Background: Profunda artery perforator (PAP) flap following cancer surgery has emerged as a relevant alternative for breast reconstruction but is mainly used in cases where the deep inferior epigastric perforator (DIEP) flap cannot be performed. The aim of this study was to compare the PAP and DIEP flaps' surgical and aesthetics outcomes in breast reconstruction.
Methods: Women who underwent breast reconstruction by DIEP or PAP flap at the Plastic Surgery Department of Georges Pompidou European University Hospital, Paris, France, between January 2012 and December 2020 were included.
Neoplasia
December 2024
Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain; Incliva biomedical health research institute, 46010 Valencia, Spain; CIBER of Cancer (CIBERONC), 28029 Madrid, Spain. Electronic address:
Background: The heterogeneous prognosis in neuroblastoma, shaped by telomere maintenance mechanisms (TMMs), notably the alternative lengthening of telomeres (ALT) pathway, necessitates a refined risk classification for high-risk patients. Current systems often lack precision, hindering tailored treatment approaches. This individual participant data (IPD) meta-analysis of survival among ALT-positive patients aims to improve risk classification systems, enhancing therapeutic strategies and patient outcomes.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!