Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review.

Cancers (Basel)

Department of Internal Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia.

Published: April 2022

Many medical applications have arisen from the technological advancement of three-dimensional (3D) bioprinting, including the printing of cancer models for better therapeutic practice whilst imitating the human system more accurately than animal and conventional in vitro systems. The objective of this systematic review is to comprehensively summarise information from existing studies on the effectiveness of bioinks in mimicking the tumour microenvironment of glioblastoma and their clinical value. Based on predetermined eligibility criteria, relevant studies were identified from PubMed, Medline Ovid, Web of Science, Scopus, and ScienceDirect databases. Nineteen articles fulfilled the inclusion criteria and were included in this study. Alginate hydrogels were the most widely used bioinks in bioprinting. The majority of research found that alginate bioinks had excellent biocompatibility and maintained high cell viability. Advanced structural design, as well as the use of multicomponent bioinks, recapitulated the native in vivo morphology more closely and resulted in bioprinted glioblastoma models with higher drug resistance. In addition, 3D cell cultures were superior to monolayer or two-dimensional (2D) cell cultures for the simulation of an optimal tumour microenvironment. To more precisely mimic the heterogenous niche of tumours, future research should focus on bioprinting multicellular and multicomponent tumour models that are suitable for drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103189PMC
http://dx.doi.org/10.3390/cancers14092149DOI Listing

Publication Analysis

Top Keywords

effectiveness bioinks
8
bioprinted glioblastoma
8
glioblastoma models
8
systematic review
8
tumour microenvironment
8
cell cultures
8
bioinks clinical
4
clinical bioprinted
4
models
4
models systematic
4

Similar Publications

Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability.

View Article and Find Full Text PDF

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF

Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.

Biomed Mater

December 2024

Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Xinjian South Road 85#, Taiyuan, China, Taiyuan, 030001, CHINA.

Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!