Isopropyl alcohol (IPA) has been conventionally used for pre-cleaning processes. As the device size decreased, the gate oxide layer became thinner. As a result, the quality of the gate oxide was degraded by a pre-cleaning process, and oxide reliabilities and product yield were affected. In this study, we investigate whether the carbon generated on the silicon interface after the IPA drying process might have induced gate oxide breakdown. Time-dependent dielectric breakdown (TDDB) failure increased in frequency since carbon contaminations were increased in the oxide according to the amount of IPA. Organic contaminations resulted in a lower energy level, and electron tunneling occurred through the gate oxide. When an external electric field was applied, organic materials in the gate oxide layer were aligned, and a percolation path formed to cause breakdown. Finally, we suggest a new cleaning method using carbon-free O deionized (DI) water as a dry-cleaning method to improve oxide dielectric breakdown. An O DI dry cleaning process could reduce carbon particles in the oxide layer and decrease gate oxide failure by 7%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102484 | PMC |
http://dx.doi.org/10.3390/nano12091563 | DOI Listing |
Heliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.
: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!