Three types of modified silicon dioxide nanoparticles (SiO2, 10−20 nm) with additives of epoxy, silane and amino groups, used independently and in combination with the entomopathogenic bacteria Bacillus thuringiensis subsp. morrisoni and fungus Metarhizium robertsii were tested against Colorado potato beetle (Leptinotarsa decemlineata) and cabbage beetles (Phyllotreta spp.). All three nanoparticles were found to have an entomocidal effect on Colorado potato beetle larvae and crucifer flea beetles when ingested. Increased susceptibility of insects to B. thuringiensis or M. robertsii blastospores and their metabolites was shown after exposure to the modified silicon dioxide nanoparticles. The potential of modified silicon dioxide nanoparticles to enhance the efficiency of biopesticides based on the bacteria B. thuringiensis and fungi M. robertsii is considered in the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100758PMC
http://dx.doi.org/10.3390/nano12091558DOI Listing

Publication Analysis

Top Keywords

silicon dioxide
16
dioxide nanoparticles
16
colorado potato
12
potato beetle
12
modified silicon
12
entomopathogenic bacteria
8
cabbage beetles
8
nanoparticles
5
silicon
4
nanoparticles combined
4

Similar Publications

Germanium nanocrystal non-volatile memory devices: fabrication, charge storage mechanism and characterization.

Nanoscale

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.

The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.

View Article and Find Full Text PDF

Understanding exposure risk using soil testing and GIS around an abandoned asbestos mine.

Ann Glob Health

January 2025

Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.

Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.

View Article and Find Full Text PDF

Geopolymerization is a soil improvement technique widely used for waste management in recent years. This study explores the potential of geopolymerization for roadbed improvement using waste materials. Recycled glass powder (RGP) and calcium carbide residue (CCR) were investigated as precursors and alkaline activators, respectively, to enhance the properties of silty sand soil.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

A novel directly compressible co-processed excipient, based-on rice starch for extended-release of tablets.

Eur J Pharm Biopharm

January 2025

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!