Aqueous CdTe quantum dots solar cells have been successfully fabricated by the blade coating method on the magnesium zinc oxide (ZnMgO or ZMO) window layer. Compared with the ZMO mono-window layer, the ZMO/CdS bi-window layer can decrease the interface recombination effectively due to the lower lattice mismatch and fast interdiffusion between CdS and CdTe. Moreover, the high temperature annealing of the CdTe quantum dots absorbed layer passivates the grain boundary of the CdTe crystalline via the replacement reaction of tellurium with sulfur. Finally, the conversion efficiency of our aqueous CdTe quantum dots solar device is improved from 3.21% to 8.06% with the introduction of the CdS interlayer and high temperature CdCl annealing. Our aqueous CdTe quantum dots solar devices show a large open circuit voltage and fill factor which are comparable with the conventional devices that are fabricated with organic CdTe quantum dots. We believe that it is the spike-like conduction band alignment between the ZMO and CdTe absorbed layer that reduces the majority carrier concentration, leading to the decrease in interface recombination probability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099490 | PMC |
http://dx.doi.org/10.3390/nano12091523 | DOI Listing |
Molecules
December 2024
State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmacy, Binzhou Medical University, Yantai, 264003, China. Electronic address:
Ciprofloxacin (CIP) is a commonly used antibiotic, but its abuse may cause bacterial resistance, posing a high risk to the environment and human health. Herein, based on the molecular imprinting technology, this study proposed a ratiometric fluorescence sensor employing the "post-doping" strategy, which aims to be rapid, selective, and visually easy-to-use for CIP detection to address antibiotic residues and environmental risks. Specifically, by exploiting the "antenna effect" of lanthanide metal ions (Ln), terbium (III) (Tb) chosen as a fluorescence-assisted functional monomer as well as the red emitting CdTe quantum dots (QDs) as the internal reference signal were introduced into multi-emission Tb-CdTe@SiO@MIPs (TbMIPs).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFFood Chem
December 2024
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, H.P. 175075, India.
The quantum yield (QY) of semiconductor quantum dots (QDs) is severely hampered by the inherent fluorescence intermittency. The QY of QDs typically increases with an increase in the excitation wavelength. Here, we present a distinctive behavior, where the QY is found to decrease with an increase in the excitation wavelength in water-soluble CdTe QDs (CQDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!