Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (HO) Released from Cancer Cells.

Nanomaterials (Basel)

Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.

Published: April 2022

Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (HO). The common methods for the detection of HO include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of HO by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of HO. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric HO detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of HO, which can be useful in the early detection of cancerous cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103167PMC
http://dx.doi.org/10.3390/nano12091475DOI Listing

Publication Analysis

Top Keywords

cancerous cells
12
hydrogen peroxide
8
diagnosis cancer
8
early detection
8
detection will
8
biosensors based
8
cancer
7
detection
6
advances electrochemical
4
electrochemical sensing
4

Similar Publications

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!