Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells.

Nanomaterials (Basel)

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea.

Published: April 2022

Perovskite solar cells (PSCs) have achieved significantly high power-conversion efficiency within a short time. Most of the devices, including those with the highest efficiency, are based on a n-i-p structure utilizing a (doped) spiro-OMeTAD hole transport layer (HTL), which is an expensive material. Furthermore, doping has its own challenges affecting the processing and performance of the devices. Therefore, the need for low-cost, dopant-free hole transport materials is an urgent and critical issue for the commercialization of PSCs. In this study, n-i-p structure PSCs were fabricated in an ambient environment with cuprous iodide (CuI) HTL, employing a novel transfer-printing technique, in order to avoid the harmful interaction between the perovskite surface and the solvents of CuI. Moreover, in fabricated PSCs, the SnO electron transport layer (ETL) has been incorporated to reduce the processing temperature, as previously reported (n-i-p) devices with CuI HTL are based on TiO, which is a high-temperature processed ETL. PSCs fabricated at 80 °C transfer-printing temperature with 20 nm iodized copper, under 1 sun illumination showed a promising efficiency of 8.3%, (J and FF; 19.3 A/cm and 53.8%), which is comparable with undoped spiro-OMeTAD PSCs and is the highest among the ambient-environment-fabricated PSCs utilizing CuI HTL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101613PMC
http://dx.doi.org/10.3390/nano12091467DOI Listing

Publication Analysis

Top Keywords

cui htl
12
cuprous iodide
8
iodide cui
8
perovskite solar
8
solar cells
8
n-i-p structure
8
hole transport
8
transport layer
8
pscs fabricated
8
pscs
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!