Cell-derived drug carriers have increasingly gained the interest of the scientific community due to their ability to imitate various natural properties of their source cells. We developed theranostics nanoplatforms composed of mesoporous silica nanoparticles (MSNs), indocyanine green (ICG) molecules, microRNAs-137 (miR-137), red-blood-cell membranes (RM), and tumor-targeting cyclo Arg-Gly-Asp-d-Phe-Cys peptides (cRGD(fC)), which were abbreviated as MSNs/ICG/miR/RM/RGD particles. These particles possessed photothermal and gene therapy properties due to ICG and miR-137, respectively. The photothermal conversion efficiency was ~18.7%. Upon 808 nm light irradiation, the tumor inhibition rate reached 94.9% with dosage of 10 mg/kg. The developed nanoplatform possessed unique properties, such as exceptional biocompatibility, immune escaping, and specific recognition, which was also used for near-infrared fluorescence, photoacoustic (PA) bimodal imaging-guided tumor recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105018 | PMC |
http://dx.doi.org/10.3390/nano12091464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!