Nonenzymatic electrochemical detection of glucose is popular because of its low price, simple operation, high sensitivity, and good reproducibility. Co-Cu MOFs precursors were synthesized via the solvothermal way at first, and a series of porous spindle-like Cu-Co sulfide microparticles were obtained by secondary solvothermal sulfurization, which maintained the morphology of the MOFs precursors. Electrochemical studies exhibit that the as-synthesized Cu-Co sulfides own excellent nonenzymatic glucose detection performances. Compared with CuS, Co (II) ion-doped CuS can improve the conductivity and electrocatalytic activity of the materials. At a potential of 0.55 V, the as-prepared Co-CuS-2 modified electrode exhibits distinguished performance for glucose detection with wide linear ranges of 0.001-3.66 mM and high sensitivity of 1475.97 µA·mM·cm, which was much higher than that of CuS- and Co-CuS-1-modified electrodes. The constructed sulfide sensors derived from MOF precursors exhibit a low detection limit and excellent anti-interference ability for glucose detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102815PMC
http://dx.doi.org/10.3390/nano12091394DOI Listing

Publication Analysis

Top Keywords

glucose detection
12
derived mof
8
mof precursors
8
high sensitivity
8
mofs precursors
8
glucose
5
detection
5
copper cobalt
4
cobalt sulfide
4
sulfide structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!