Apart from a well-known role in the innate immune system, lipocalin 2 (Lcn2) has been recently characterized as a critical regulator of thermogenesis and lipid metabolism. However, the physiological mechanism through which Lcn2 regulates cellular metabolism and thermogenesis in adipocytes remains unknown. We found that Lcn2 expression and secretion are significantly upregulated by arachidonic acid (AA) and mTORC1 inhibition in differentiated inguinal adipocytes. AA-induced Lcn2 expression and secretion correlate with the inflammatory NFkB activation. Lcn2 deficiency leads to the upregulation of cyclooxygenase-2 (COX2) expression, as well as increased biosynthesis and secretion of prostaglandins (PGs), particularly PGE2 and PGD2, induced by AA in adipocytes. Furthermore, Lcn2 deficiency affects the mTOR signaling regulation of thermogenic gene expression, lipogenesis, and lipolysis. The loss of Lcn2 dismisses the effect of mTORC1 inhibition by rapamycin on COX2, thermogenesis genes, lipogenesis, and lipolysis, but has no impact on p70 S6Kinase-ULK1 activation in Lcn2-deficient adipocytes. We conclude that Lcn2 converges the COX2-PGE2 and mTOR signaling pathways in the regulation of thermogenesis and lipid metabolism in adipocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105538PMC
http://dx.doi.org/10.3390/cells11091535DOI Listing

Publication Analysis

Top Keywords

mtor signaling
12
thermogenesis lipid
12
lipid metabolism
12
signaling regulation
8
regulation thermogenesis
8
metabolism adipocytes
8
lcn2
8
lcn2 expression
8
expression secretion
8
mtorc1 inhibition
8

Similar Publications

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Advances in Pharmacological Research on Icaritin: A Comprehensive Review.

Am J Chin Med

January 2025

Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.

has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from , has received increasing attention in recent years due to its wide range of pharmacological activities.

View Article and Find Full Text PDF

mTOR/p70S6K signaling pathway promotes fibrillin-1 expression in AKI-to-CKD transition post CA/CPR.

Cell Signal

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:

The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.

View Article and Find Full Text PDF

Copper excess induces autophagy dysfunction and mitochondrial ROS-ferroptosis progression, inhibits cellular biosynthesis of milk protein and lipid in bovine mammary epithelial cells.

Ecotoxicol Environ Saf

January 2025

College of Animal Science, Jilin University, Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding In Northeastern Frigid Area, Changchun 130062, China. Electronic address:

Excessive copper (Cu) has the potential risk to ecosystems and organism health, with its impact on dairy cow mammary glands being not well-defined. This study used a bovine mammary epithelial cell (MAC-T) model to explore how copper excess affects cellular oxidative stress, autophagy, ferroptosis, and protein and lipid biosynthesis in milk. Results showed the increased intracellular ROS, MDA, and CAT (P < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!