In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103620PMC
http://dx.doi.org/10.3390/cells11091473DOI Listing

Publication Analysis

Top Keywords

trh tal
12
phosphosignaling pathways
8
thyrotropin-releasing hormone
8
potential therapeutic
8
trh receptor
8
trh
6
β-arrestin2 critically
4
critically involved
4
involved differential
4
differential regulation
4

Similar Publications

Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation.

View Article and Find Full Text PDF

In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects.

View Article and Find Full Text PDF

Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

Pharmacol Res

October 2017

National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA. Electronic address:

Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested.

View Article and Find Full Text PDF

Raphé-derived serotonin (5-HT) and thyrotropin-releasing hormone (TRH) play important roles in fundamental, homeostatic control systems such as breathing and specifically the ventilatory CO2 chemoreflex. Brown Norway (BN) rats exhibit an inherent and severe ventilatory insensitivity to hypercapnia but also exhibit relatively normal ventilation at rest and during other conditions, similar to multiple genetic models of 5-HT system dysfunction in mice. Herein, we tested the hypothesis that the ventilatory insensitivity to hypercapnia in BN rats is due to altered raphé gene expression and the consequent deficiencies in raphé-derived neuromodulators such as TRH.

View Article and Find Full Text PDF

Thyrotropin-releasing hormone receptor type 1 (TRH-R1), not TRH-R2, primarily mediates taltirelin actions in the CNS of mice.

Neuropsychopharmacology

May 2013

Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA.

Thyrotropin-releasing hormone receptor type 2 (TRH-R2), not TRH-R1, has been proposed to mediate the CNS effects of TRH and its more effective analog taltirelin (TAL). Consistent with this idea, TAL exhibited higher binding affinity and signaling potency at mouse TRH-R2 than TRH-R1 in a model cell system. We used TRH-R1 knockout (R1ko), R2ko and R1/R2ko mice to determine which receptor mediates the CNS effects of TAL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!