There is a shortage of suitable tissue-engineered solutions for gingival recession, a soft tissue defect of the oral cavity. Autologous tissue grafts lead to an increase in morbidity due to complications at the donor site. Although material substitutes are available on the market, their development is early, and work to produce more functional material substitutes is underway. The latter materials along with newly conceived tissue-engineered substitutes must maintain volumetric form over time and have advantageous mechanical and biological characteristics facilitating the regeneration of functional gingival tissue. This review conveys a comprehensive and timely perspective to provide insight towards future work in the field, by linking the structure (specifically multilayered systems) and function of electrospun material-based approaches for gingival tissue engineering and regeneration. Electrospun material composites are reviewed alongside existing commercial material substitutes', looking at current advantages and disadvantages. The importance of implementing physiologically relevant degradation profiles and mechanical properties into the design of material substitutes is presented and discussed. Further, given that the broader tissue engineering field has moved towards the use of pre-seeded scaffolds, a review of promising cell options, for generating tissue-engineered autologous gingival grafts from electrospun scaffolds is presented and their potential utility and limitations are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099797 | PMC |
http://dx.doi.org/10.3390/ijms23095256 | DOI Listing |
Tob Control
December 2024
School of Public Health, Georgia State University, Atlanta, Georgia, USA.
Introduction: IQOS was sold in the US in 2019-2021 and will likely return in 2024. It is important to anticipate IQOS' market penetration; thus, this study examined US adults' prior awareness and perceptions, intentions to try and reactions to an IQOS reduced-risk exposure statement.
Methods: 61 adults from three US cities were recruited to represent four tobacco use subgroups: current cigarette and never electronic nicotine delivery systems (ENDS) use; current cigarette and discontinued ENDS use; current cigarette and ENDS use; and former cigarette use and switched to ENDS.
Small
December 2024
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Shanghai for Science and Technology, institute of energy materials science, CHINA.
The utilization of cobalt-based sulfides is constrained by their inherently low conductivity and slow sodium ion diffusion kinetics. Modifying the electronic configuration and constructing heterostructures are promising strategies to enhance intrinsic conductivity and expedite the sodium ion diffusion process. In this study, heterogeneous nanoparticles of Se-substituted CoS2/CoSe2, embedded within heteroatom-modified carbon nanosheet, were synthesized using metal molten salt-assisted dimensionality reduction alongside concurrent sulfurization and selenization techniques.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, P. R. China.
Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.
View Article and Find Full Text PDFPhys Eng Sci Med
December 2024
Department of Medical Imaging and Nuclear Medicine, Gosford Hospital, Building K3, Gosford, NSW, Australia.
Quantitative accuracy and constancy of Siemens xSPECT Bone quantitative reconstruction algorithm (xBone) can be monitored using activity-filled hollow spheres, which could be 3D printed (3DP) to increase accessibility to phantoms. One concern is that 3D prints can have air gaps in the walls which may pose issues for attenuation correction and xBone tissue zone mapping. This study assessed the feasibility of using 3DP spheres (3DP-S) with materials PLA, PETG and Resin as substitutes for commercial hollow spheres (C-S).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!