Tumour Stem Cells in Breast Cancer.

Int J Mol Sci

Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia.

Published: May 2022

Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC non-CSCs and their significance for metastasis are considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099719PMC
http://dx.doi.org/10.3390/ijms23095058DOI Listing

Publication Analysis

Top Keywords

tumour stem
8
stem cells
8
breast cancer
8
cells breast
4
cancer tumour
4
cells cscs
4
cscs self-renewing
4
self-renewing population
4
population plays
4
plays roles
4

Similar Publications

Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.

View Article and Find Full Text PDF

Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.

View Article and Find Full Text PDF

Although osteosarcomas are the most frequent primary malignant bone tumors, the primary cranial manifestation of this condition is very rare with only a limited number of cases presented in the literature. We present the case of a 20-year-old male patient who underwent single-session surgical intervention for resection of right frontal osteosarcoma with a tailor-made craniotomy and cranioplasty using virtually designed 3D-printed templates and molds. Subsequently, the patient was treated according to the EURAMOS protocol and received adjuvant systemic chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!