Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obesity induced by a high-fat diet (HFD) leads to the excessive consumption of primordial follicles (PFs) in the ovaries. There is systemic chronic inflammation under HFD conditions, but no previous studies have explored whether there is a certain causal relationship between HFD-induced chronic inflammation and the overactivation of PFs. Here, we showed that HFD causes disorders of intestinal microflora in mice, with five Gram-negative bacteria showing the most profound increase at the genus level compared to the normal diet (ND) groups and contributes to the production of endotoxin. Endotoxin promotes M1 macrophage infiltration in the ovaries, where they exhibit proinflammatory actions by secreting cytokines IL-6, IL-8, and TNFα. These cytokines then boost the activation of PFs by activating Signal Transducer and Activator of Transcription 3 (STAT3) signaling in follicles. Interestingly, transplantation of the HFD intestinal microflora to the ND mice partly replicates ovarian macrophage infiltration, proinflammation, and the overactivation of PFs. Conversely, transplanting the ND fecal microbiota to the HFD mice can alleviate ovarian inflammation and rescue the excessive consumption of PFs. Our findings uncover a novel and critical function of gut microbes in the process of PF overactivation under HFD conditions, and may provide a new theoretical basis for the microbial treatment of patients with premature ovarian insufficiency caused by HFD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100959 | PMC |
http://dx.doi.org/10.3390/ijms23094797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!