A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65-90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10-35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100268PMC
http://dx.doi.org/10.3390/ijms23094774DOI Listing

Publication Analysis

Top Keywords

psi complexes
12
conducting glass
8
light-induced charge
8
charge separation
8
active psi
8
reducing agents
8
psi
6
electron transfer
4
transfer bio-photoelectrode
4
bio-photoelectrode based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!