The Endolysosomal System: The Acid Test for SARS-CoV-2.

Int J Mol Sci

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.

Published: April 2022

This review aims to describe and discuss the different functions of the endolysosomal system, from homeostasis to its vital role during viral infections. We will initially describe endolysosomal system's main functions, presenting recent data on how its compartments are essential for host defense to explore later how SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and other coronaviruses subvert these organelles for their benefit. It is clear that to succeed, pathogens' evolution favored the establishment of ways to avoid, escape, or manipulate lysosomal function. The unavoidable coexistence with such an unfriendly milieu imposed on viruses the establishment of a vast array of strategies to make the most out of the invaded cell's machinery to produce new viruses and maneuvers to escape the host's defense system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105036PMC
http://dx.doi.org/10.3390/ijms23094576DOI Listing

Publication Analysis

Top Keywords

endolysosomal system
8
system acid
4
acid test
4
test sars-cov-2
4
sars-cov-2 review
4
review aims
4
aims describe
4
describe discuss
4
discuss functions
4
functions endolysosomal
4

Similar Publications

Triple-Negative Breast Cancer Aptamer-Targeting Porous Silicon Nanocarrier.

ACS Appl Mater Interfaces

January 2025

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.

Common treatment approaches for triple-negative breast cancer (TNBC) are associated with severe side effects due to the unfavorable biodistribution profile of potent chemotherapeutics. Here, we explored the potential of TNBC-targeting aptamer-decorated porous silicon nanoparticles (pSiNPs) as targeted nanocarriers for TNBC. A "salt-aging" strategy was employed to fabricate a TNBC-targeting aptamer functionalized pSiNP that was highly colloidally stable.

View Article and Find Full Text PDF

Dual Strategies Based on Golgi Apparatus/Endoplasmic Reticulum Targeting and Anchoring for High-Efficiency siRNA Delivery and Tumor RNAi Therapy.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA.

View Article and Find Full Text PDF

Protein handling in kidney tubules.

Nat Rev Nephrol

January 2025

Institute of Anatomy, University of Zurich, Zurich, Switzerland.

The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS).

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!