Idiopathic pulmonary fibrosis (IPF) is caused by progressive lung tissue impairment due to extended chronic fibrosis, and it has no known effective treatment. The use of conditioned media (CM) from an immortalized human adipose mesenchymal stem cell line could be a promising therapeutic strategy, as it can reduce both fibrotic and inflammatory responses. We aimed to investigate the anti-inflammatory and anti-fibrotic effect of CM on human pulmonary subepithelial myofibroblasts (hPSM) and on A549 pulmonary epithelial cells, treated with pro-inflammatory or pro-fibrotic mediators. CM inhibited the proinflammatory cytokine-induced mRNA and protein production of various chemokines in both hPSMs and A549 cells. It also downregulated the mRNA expression of IL-1α, but upregulated IL-1β and IL-6 mRNA production in both cell types. CM downregulated the pro-fibrotic-induced mRNA expression of collagen Type III and the migration rate of hPSMs, but upregulated fibronectin mRNA production and the total protein collagen secretion. CM's direct effect on the chemotaxis and cell recruitment of immune-associated cells, and its indirect effect on fibrosis through the significant decrease in the migration capacity of hPSMs, makes it a plausible candidate for further development towards a therapeutic treatment for IPF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102072 | PMC |
http://dx.doi.org/10.3390/ijms23094570 | DOI Listing |
Inflamm Res
January 2025
Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria.
Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy.
Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
Chronic kidney disease (CKD) progresses through mechanisms involving inflammation, fibrosis, and oxidative stress, leading to the gradual structural and functional deterioration of the kidneys. Tormentic acid (TA), a triterpenoid compound with known anti-inflammatory and antioxidant properties, shows significant potential in counteracting these pathological processes. This study explored the protective role of TA in a unilateral ureteral obstruction (UUO)-induced CKD model.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
Liver fibrosis is still a serious health concern worldwide, and there is increasing interest in mesenchymal stem cells (MSCs) with tremendous potential for treating this disease because of their regenerative and paracrine effects. Recently, many researches have focused on using the released exosomes (EXOs) from stem cells to treat liver fibrosis rather than using parent stem cells themselves. MSC-derived EXOs (MSC-EXOs) have demonstrated favourable outcomes similar to cell treatment in terms of regenerative, immunomodulatory, anti-apoptotic, anti-oxidant, anti-necroptotic, anti-inflammatory and anti-fibrotic actions in several models of liver fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!