Rising incidences and mortalities have drawn attention to infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101188PMC
http://dx.doi.org/10.3390/ijms23094509DOI Listing

Publication Analysis

Top Keywords

tcda tcdb
12
direct binding
8
tcdb
5
human
4
human α-defensin-6
4
α-defensin-6 neutralizes
4
neutralizes toxins
4
toxins tcda
4
tcdb direct
4
binding rising
4

Similar Publications

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

[Clostridioides difficile infection diagnosis].

Ann Biol Clin (Paris)

January 2025

Laboratoire Clostridioides difficile associé au Centre National de Référence des bactéries anaérobies et du botulisme, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, 184 rue du Faubourg Saint-Antoine, 75012 Paris France, UMR-S 1139 3PHM, Université Paris Cité, Paris, France.

Clostridioides difficile is a Gram-positive, spore-forming anaerobic enteropathogen responsible for a wide spectrum of clinical diseases ranging from mild diarrhoea to pseudomembranous colitis. It is the first cause of healthcare-associated diarrhoeas, but community-associated Clostridioides difficile infections (CDI) are increasingly reported in patients without the common risk factors (age > 65 years, previous antibiotic treatment). The main C.

View Article and Find Full Text PDF

is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of strains.

View Article and Find Full Text PDF

Genomic Epidemiology of ST81 in Multiple Hospitals in China.

Infect Drug Resist

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.

Background: sequence type (ST) 81, mainly associated with ribotype (RT) 369, is a TcdA-negative and TcdB-positive genotype and a common ST found in China. Furthermore, ST81 strains are reported with highest resistance rates to many antimicrobial agents. However, given the potential for ST81 transmission, research into the epidemiological characteristics of this type of ST remain limited.

View Article and Find Full Text PDF

(a) Clostridioides difficile (C. difficile) bacterium can cause severe diarrhea and its over-colonization in the host's intestinal tract lead to the development of pseudomembranous colitis, generally due to antibiotic usage. The primary exotoxins involved are toxin A (TcdA) and toxin B (TcdB), the latter being more pathogenic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!