A simple mathematical treatment for predicting linear solvent strength behavior in gradient elution: Application to biomolecules.

J Sep Sci

Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, Villeurbanne, 69100, France.

Published: September 2022

This paper describes an approach to rapidly and easily calculate the linear solvent strength parameters, namely log k and S, under reversed-phase liquid chromatography conditions. This approach, which requires two preliminary gradient experiments to determine the retention parameters, was applied to various representative compounds including small molecules, peptides, and proteins. The retention time prediction errors were compared to the ones obtained with a commercial HPLC modeling software, and a good correlation was found between the values. However, two important constraints have to be accounted for to maintain good predictions with this new approach: i) the retention factor at the initial composition of the preliminary gradient series have to be large enough (i.e., log k above 2.1) and ii) the retention models have to be sufficiently linear. While these two conditions are not always met with small molecules or even peptides, the situation is different with large biomolecules. This is why our simple calculation method should be preferentially applied to calculate the linear solvent strength parameters of protein samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543774PMC
http://dx.doi.org/10.1002/jssc.202200161DOI Listing

Publication Analysis

Top Keywords

linear solvent
12
solvent strength
12
calculate linear
8
strength parameters
8
preliminary gradient
8
small molecules
8
molecules peptides
8
simple mathematical
4
mathematical treatment
4
treatment predicting
4

Similar Publications

Understanding Ion Transport in Alkyl Dicarbonates: An Experimental and Computational Study.

ACS Phys Chem Au

January 2025

Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!