A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process. | LitMetric

Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process.

Bioresour Technol

Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China. Electronic address:

Published: August 2022

Five full-scale food waste composts were conducted under different aeration frequencies (no aeration, aeration at different intervals, and continuous aeration) to reveal the optimal strategy and its microbial mechanisms. The highest degradation rate (77.2%) and humus content (29.3%) were observed in Treatment D with interval aeration (aeration 20 min, pause 10 min). Aeration influenced the degradation and humification rate by regulating microbial interactions. The microbial interactions peaked in Treatment D, with a 1.30-fold increase. In terms of the microbial community, Thermobifida was a key genus for improving positive cohesion, fulfilling three criteria (high abundance, high occurrence frequency, and significant differences between treatments). The aeration strategy employed in Treatment D not only increased relative abundance of Thermobifida (1.2 times higher) but also strengthened interaction between it and functional genera (34 nodes). Overall, interval aeration, featured by 20 min aeration and 10 min pause, could increase microbial interactions and improve composting efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127296DOI Listing

Publication Analysis

Top Keywords

microbial interactions
16
interval aeration
12
aeration
10
degradation humification
8
aeration aeration
8
microbial
6
aeration improves
4
improves degradation
4
humification enhancing
4
enhancing microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!