To what extent do waste management strategies need adaptation to post-COVID-19?

Sci Total Environ

Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark. Electronic address:

Published: September 2022

The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087148PMC
http://dx.doi.org/10.1016/j.scitotenv.2022.155829DOI Listing

Publication Analysis

Top Keywords

waste management
24
management system
12
covid-19 pandemic
8
management systems
8
management
6
waste
6
extent waste
4
management strategies
4
strategies adaptation
4
adaptation post-covid-19?
4

Similar Publications

Predicting cobalt ion concentration in hydrometallurgy zinc process using data decomposition and machine learning.

Sci Total Environ

January 2025

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China. Electronic address:

Solid waste is one of the primary contributors to environmental pollution currently, it is crucial to enhance the prevention and control of solid waste pollution in environmental management. The effectiveness of the second stage of purification in the industrial zinc hydrometallurgy is determined by the concentration of cobalt ion. Manual testing and monitoring of cobalt ion concentration are time consuming and costly, and prone to delays, which can result in discharge of cobalt ion concentration that does not meet the standards, leading to water pollution.

View Article and Find Full Text PDF

Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.

View Article and Find Full Text PDF

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!