Heterogeneous photo-Fenton technology has drawn tremendous attention for removal of recalcitrant pollutants. Fe-based metal-organic frameworks (Fe-MOFs) are regarded to be superior candidates in wastewater treatment technology. However, the central metal sites of the MOFs are coordinated with the linkers, which reduces active site exposure and decelerates HO activation. In this study, a series of 2, 5-dioxido-1, 4-benzenedicarboxylate (HDOBDC)-functionalized MIL-100(Fe) with enhanced degradation performance was successfully constructed via solvothermal strategy. The modified MIL-100(Fe) displayed an improvement in photo-Fenton behaviors. The photocatalytic rate constant of optimized MIL-100(Fe)-1/2/3 are 2.3, 3.6 and 4.4 times higher compared with the original MIL-100(Fe). The introduced HDOBDC accelerates the separation and transfer in photo-induced charges and promotes Fe(II)/Fe(III) cycle, thus improving the performance. •OH and •O are main reactive radicals in tetracycline (TCH) degradation. Dealkylation, hydroxylation, dehydration and dealdehyding are the main pathways for TCH degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.113399 | DOI Listing |
Small
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Upcycling organic and inorganic waste into value-added metal-organic frameworks (MOFs) presents a sustainable strategy for mitigating waste pollution and promoting economic viability. However, rapid synthesis of MOF materials derived from actual industrial waste under mild conditions remains challenging. Herein, Fe-MOF MIL-88B(Fe) was successfully fabricated within 1 h at room temperature using galvanizing pickling waste liquid and terephthalic acid derived from waste poly(ethylene terephthalate).
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.
View Article and Find Full Text PDFMolecules
December 2024
College of Engineering, South China Agricultural University, Guangzhou 510642, China.
TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran. Electronic address:
Photocatalytic technology has emerged as a promising solution to global water contamination, mainly through the effective degradation of persistent pharmaceutical pollutants. However, a few challenges still exist in enhancing degradation efficiency, reducing the toxicity of by-products, and ensuring cost-effective scalability. This study focuses on Tetracycline Hydrochloride (TCH) as an index antibiotic pollutant to evaluate the performance of a novel MXene-derived TiO-supported SiO₂/TiC composite (SMXT) synthesized using ultrasonic and wet impregnation techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!