Static and dynamic analysis of sulfamethoxazole using GO/ZnO modified glassy carbon electrode by differential pulse voltammetry and amperometry techniques.

Chemosphere

Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India.

Published: September 2022

AI Article Synopsis

  • The study focuses on creating an electrochemical sensor to detect sulfamethoxazole (SMX) in surface water, addressing the negative impact of SMX contamination on ecosystems.
  • The sensor utilizes a GO/ZnO nanocomposite modified electrode, showing superior performance compared to electrodes modified with GO and ZnO alone, with a detection range of 0.10 to 1.5 M and a limit of detection of 28.9 nM.
  • Optimization of conditions such as electrolyte and pH led to the successful application of the sensor for real-time SMX detection in wastewater samples, demonstrating its practical utility.

Article Abstract

Surface water contamination of sulfamethoxazole (SMX) has tremendously affected the ecosystem. A primary study was performed to develop an electrochemical sensor for the determination of SMX. Overcoming the demerit associated with the conventional techniques, an electrochemical method was developed using GO/ZnO nanocomposite modified electrode to detect SMX in 0.1 M phosphate buffer (pH-5.5) buffer solution. The GO, ZnO and GO/ZnO nanocomposite were prepared using modified Hummer's, precipitation and sonochemical methods, respectively. Physico-chemical properties of all the materials and its modified electrode were analysed. Comparison was made by studying the SMX sensing performance of electrodes modified with GO, ZnO and GO/ZnO nanocomposites. Out of which GO/ZnO nanocomposite exhibited excellent sensing performance with the concentration range from 0.10 × 10 to 1.5 × 10 M with the limit of detection (LOD) 28.9 nM. The parameters such as electrolyte, effect of pH, scan rate were optimized for effective sensing performance. From the optimized results 0.1 M phosphate buffer was found to be a suitable electrolyte and the pH 5.5 was found to be appropriate to sense SMX at the scan rate 50 mVs. Under optimized condition, the Differential Pulse Voltammetry (DPV) and Amperometry techniques were adopted for electrochemical sensing of SMX under static and hydrodynamic condition. The developed method was successfully tested for real time analysis for the samples collected from waste water treatment plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134926DOI Listing

Publication Analysis

Top Keywords

go/zno nanocomposite
12
sensing performance
12
differential pulse
8
pulse voltammetry
8
amperometry techniques
8
modified electrode
8
01 m phosphate
8
phosphate buffer
8
zno go/zno
8
scan rate
8

Similar Publications

Background: The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health.

View Article and Find Full Text PDF

A significant health risk arises from the bioaccumulation of harmful Cd (II) in drinking water. Here, we report the unique Cd (II) remediation from drinking water by using novel GO-ZnO-curcumin composite. The composites were tailored by varying the ratio of GO-ZnO and curcumin.

View Article and Find Full Text PDF

Nano-ferrites, metal oxides, and carbon-based nanomaterials have been used frequently to enhance optical and magnetic prospects for latent applications. Copper ferrite/Graphene Oxide and Zinc Oxide (CuFeO/GO/ZnO) ternary nanocomposite synthesized by hydrothermal route showed dramatically good outcomes as the band gap energy value of synthesized nanocomposite approaches to 2.4 eV.

View Article and Find Full Text PDF

Fabrication of carboxymethyl cellulose/graphene oxide/ZnO composite hydrogel for efficient removal of fuchsin dye from aqueous media.

Int J Biol Macromol

October 2024

Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan. Electronic address:

Hydrogels are hydrophilic, insoluble, and highly porous 3D networks capable of absorbing large amounts of water. This study aimed to develop a carboxymethyl cellulose/graphene oxide (CMC/GO) hydrogel, cross-linked with citric acid and modified with zinc oxide (ZnO) nanoparticles (CMC/GO/ZnO), synthesized via the sol-gel method. The formulated composite hydrogel samples were characterized by Fourier transmittance infrared spectroscopy (FTIR), scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermo-gravimetric analysis (TGA).

View Article and Find Full Text PDF

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!