The output of a deep learning (DL) auto-segmentation application should be reviewed, corrected if needed and approved before being used clinically. This verification procedure is labour-intensive, time-consuming and user-dependent, which potentially leads to significant errors with impact on the overall treatment quality. Additionally, when the time needed to correct auto-segmentations approaches the time to delineate target and organs at risk from scratch, the usability of the DL model can be questioned. Therefore, an automated quality assurance framework was developed with the aim to detect in advance aberrant auto-segmentations.. Five organs (prostate, bladder, anorectum, femoral head left and right) were auto-delineated on CT acquisitions for 48 prostate patients by an in-house trained primary DL model. An experienced radiation oncologist assessed the correctness of the model output and categorised the auto-segmentations into two classes whether minor or major adaptations were needed. Subsequently, an independent, secondary DL model was implemented to delineate the same structures as the primary model. Quantitative comparison metrics were calculated using both models' segmentations and used as input features for a machine learning classification model to predict the output quality of the primary model.. For every organ, the approach of independent validation by the secondary model was able to detect primary auto-segmentations that needed major adaptation with high sensitivity (recall = 1) based on the calculated quantitative metrics. The surface DSC and APL were found to be the most indicated parameters in comparison to standard quantitative metrics for the time needed to adapt auto-segmentations.. This proposed method includes a proof of concept for the use of an independent DL segmentation model in combination with a ML classifier to improve time saving during QA of auto-segmentations. The integration of such system into current automatic segmentation pipelines can increase the efficiency of the radiotherapy contouring workflow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac6fad | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!