Phosphorus mining from eutrophic marine environment towards a blue economy: The role of bio-based applications.

Water Res

Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-11421 Stockholm, Sweden. Electronic address:

Published: July 2022

Global phosphorus reserves are under pressure of depletion in the near future due to increased consumption of primary phosphorus reservoirs and improper management of phosphorus. At the same time, a considerable portion of global marine water bodies has been suffering from eutrophication due to excessive nutrient loading. The marine environment can be considered as a valuable phosphorus source due to nutrient rich eutrophic seawater and sediment which could potentially serve as phosphorus mines in the near future. Hence, sustainable phosphorus recovery strategies should be adapted for marine systems to provide phosphorus for the growing market demand and simultaneously control eutrophication. In this review, possible sustainable strategies for phosphorus removal and recovery from marine environments are discussed in detail. Bio-based strategies relying on natural phosphorus uptake/release metabolism of living organisms are suggested as promising options that can provide both phosphorus removal and recovery from marine waters for achieving a sustainable marine ecosystem. Among them, the utilization of microorganisms seems promising to develop novel strategies. However, the research gap for the technical applicability of these strategies is still considerably big. Therefore, future research should focus on the technical development of the strategies through laboratory and/or field studies. Coupling phosphorus mining with other valorisation pathways (i.e., metal recovery, energy production) is also suggested to improve overall sustainability and economic viability. Environmental, economic and societal challenges should altogether be well addressed prior to real scale applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118505DOI Listing

Publication Analysis

Top Keywords

phosphorus
12
phosphorus mining
8
marine environment
8
provide phosphorus
8
phosphorus removal
8
removal recovery
8
recovery marine
8
marine
7
strategies
6
mining eutrophic
4

Similar Publications

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.

View Article and Find Full Text PDF

MarR family regulator LcbR2 activates lincomycin biosynthesis in multiple ways.

Int J Biol Macromol

January 2025

Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Lincomycin, produced by the actinomycete Streptomyces lincolnensis, is highly effective against Gram-positive bacteria and protozoans, making it widely used in clinical settings. This study identified LcbR2, a MarR family transcriptional regulator, as an activator of lincomycin biosynthesis. Knocking out the lcbR2 gene reduced lincomycin production by 63.

View Article and Find Full Text PDF

Influence of precipitation and temperature variability on anthropogenic nutrient inputs in a river watershed: Implications for environmental management.

J Environ Manage

January 2025

Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai, 519087, China.

Since the Industrial Revolution, anthropogenic activities have substantially increased the input of nitrogen (N) and phosphorus (P) into river watersheds, exacerbated by uncertainties stemming from climate change. This study provided a detailed analysis of N and P inputs within the Dawen River Watershed in China from 2000 to 2021. The Net Anthropogenic Nitrogen Input (NANI) and Net Anthropogenic Phosphorus Input (NAPI) methods were used in study, which aimed to investigate how they respond to various climate change factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!