Estrogen and BRCA1 deficiency synergistically induce breast cancer mutation-related DNA damage.

Biochem Biophys Res Commun

Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510630, China; Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Published: July 2022

Estrogen (E2) is crucial for the development of breast cancer caused by BRCA1 mutation, and can increase the DNA damage in BRCA1-deficient cells. However, the mechanisms through which BRCA1 deficiency and E2 synergistically induce DNA damage remains unclear. In this study, we analyzed the distribution of DNA damage in E2-treated BRCA1-deficient cells. We detected DNA lesions in the vicinity of genes that are transcriptionally activated by estrogen receptor-α (ER). Loss of BRCA1 altered chromatin binding by ER, which significantly affected the distribution of DNA damage. Moreover, these changes were associated with the established mutations in BRCA1-mutant breast cancer. Taken together, our findings reveal a new mechanism underlying the DNA damage in breast cancer cells that is synergistically induced by BRCA1 deficiency and E2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.04.142DOI Listing

Publication Analysis

Top Keywords

dna damage
24
breast cancer
16
brca1 deficiency
12
deficiency synergistically
8
synergistically induce
8
brca1-deficient cells
8
distribution dna
8
dna
7
damage
6
estrogen brca1
4

Similar Publications

Cytotoxicity and genotoxicity of orthodontic bands after aging: an in-vitro study.

BMC Oral Health

January 2025

Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-3119, Shiraz, Iran.

Background: This investigation sought to evaluate cytotoxic and genotoxic effects of two different types of orthodontic bands after aging in acidic and neutral artificial saliva using human gingival fibroblast-like (HGF1-PI 1) cell lines.

Methods: Two commercial brands of orthodontic molar bands (American orthodontic (AO) and 3 S-dental bands), commonly used by orthodontists, were tested. These bands were divided into four groups to examine the effects of aging following thermocycling, and pH variations (pH = 4.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.

View Article and Find Full Text PDF

Novel radiation sensitizers, including inhibitors targeting DNA damage response, have been developed to enhance the efficacy of anticancer treatments that induce DNA damage in cancer cells. Peposertib, a potent, selective, and orally administered inhibitor of DNA-dependent protein kinase, impedes the nonhomologous end-joining mechanism for DNA double-strand break (DSB) repair. We investigated radioimmunotherapy alone or with peposertib in preclinical models of renal cell carcinoma (RCC) or prostate cancer.

View Article and Find Full Text PDF

Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma.

Int J Pharm

January 2025

Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China. Electronic address:

The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!