A review of research on the impact of E171/TiO NPs on the digestive tract.

J Trace Elem Med Biol

Institute of Animal Nutrition and Bromatology, Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, Lublin 20-950, Poland.

Published: July 2022

Nanotechnology utilises particles of between 1 and 100 nm in size. In recent years, it has enjoyed widespread application in a variety of areas. However, this has also raised increasing concerns regarding the effects that the use of nanoparticles may have on human health. The nanoparticles of titanium dioxide (TiO NPs) are among the most promising nanomaterials and have already found wide use in cosmetics, medicine and, the food industry. A nano-sized (diameter < 100 nm) fraction of TiO is present, at a certain percentage, in the E171 ( in the EU) pigment commonly used as an additive in food, whose presence raises particular concerns in terms of its potential negative health impact. The consumption of E171 food additive is increasingly associated with disorders of the intestinal barrier, including intestinal dysbiosis. It may disrupt the normal functions of the gastrointestinal tract (GIT) including: enzymatic digestion of primary nutrients (lipids, proteins, or carbohydrates). The aim of this review is to provide a comprehensive and reliable overview of studies conducted in recent years in terms of the substance's potentially negative impact on human and animal alimentary systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2022.126988DOI Listing

Publication Analysis

Top Keywords

review impact
4
impact e171/tio
4
e171/tio nps
4
nps digestive
4
digestive tract
4
tract nanotechnology
4
nanotechnology utilises
4
utilises particles
4
particles 100 nm
4
100 nm size
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Background: There is potential for digital mental health interventions to provide affordable, efficient, and scalable support to individuals. Digital interventions, including cognitive behavioral therapy, stress management, and mindfulness programs, have shown promise when applied in workplace settings.

Objective: The aim of this study is to conduct an umbrella review of systematic reviews in order to critically evaluate, synthesize, and summarize evidence of various digital mental health interventions available within a workplace setting.

View Article and Find Full Text PDF

Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.

View Article and Find Full Text PDF

Surgical Scheduling Errors During Manual Data Transfer.

Qual Manag Health Care

January 2025

Author Affiliations: Source Healthcare, Santa Monica, California.

Background And Objectives: Retrospective studies examining errors within a surgical scheduling setting do not fully represent the effects of human error involved in transcribing critical patient health information (PHI). These errors can negatively impact patient care and reduce workplace efficiency due to insurance claim denials and potential sentinel events. Previous reports underscore the burden physicians face with prior authorizations which may lead to serious adverse events or the abandonment of treatment due to these delays.

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!