Ultrasensitive detection of amoxicillin using the plasmonic silver nanocube as SERS active substrate.

Spectrochim Acta A Mol Biomol Spectrosc

Eskisehir Osmangazi University, Central Research Laboratory Application and Research Center (ARUM), Eskisehir 26040, Turkey. Electronic address:

Published: October 2022

Even though amoxicillin is used as an antibacterial drug in some foods such as fish, chick, etc. However, the use of amoxicillin in the food industry is prohibited. Therefore, rapid detection and sensitive detection at ultra-low concentration of amoxicillin is very important for human. Surface enhanced Raman scattering (SERS) is fast and reliable method to determine the molecules at ultra-low concentration. In this study, silver nanocubes were synthesized and used as SERS active substrate. The synthesized Ag NCs exhibit an excellent sensitivity towards the detection of amoxicillin at the lowest concentration of 10 M based on the effect resulting from Ag NCs leading to the high electromagnetic effect and chemical mechanism. The dynamic linear regression between the Raman intensity and amoxicillin concentration over seven orders of magnitude (from 10 to 10 M) was excellent with high reliability (R = 0.99). On the one hand, SERS substrate can be used after storing for 20 days. Because Ag NCs also demonstrated remarkable recyclability, reproducibility, and chemical stability. As a result, Ag NCs can be used as a potential SERS substrate to detect amoxicillin at ultra-low concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121308DOI Listing

Publication Analysis

Top Keywords

ultra-low concentration
12
detection amoxicillin
8
sers active
8
active substrate
8
sers substrate
8
amoxicillin
7
sers
5
concentration
5
ultrasensitive detection
4
amoxicillin plasmonic
4

Similar Publications

By analyzing the chemical characteristics of the formation water in the tight sandstone reservoirs of the P2x8 and P1s1 in the southern Ordos Basin, combined with rock mineral composition, reservoir physical properties, and well gas testing data, the genesis mechanism of formation water and its guiding role in gas reservoir development were discussed. The results show that the formation water is derived from the mixture of syngenetic seawater and meteoric water and has undergone remarkable modification by water-rock interactions, showing characteristics of Ca enrichment and Mg and SO depletion. The albitization of plagioclase in reservoir rock components causes Ca excess and Na deficiency in formation water, while the chloritization of albite leads to the increase of Na.

View Article and Find Full Text PDF

Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening.

Light Sci Appl

January 2025

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.

Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.

View Article and Find Full Text PDF

The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.

View Article and Find Full Text PDF

Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.

View Article and Find Full Text PDF

Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!