A high electrical field is necessary to achieve a high brightness for halide perovskite light-emitting diodes (PeLEDs). Charge accumulation in the perovskite film becomes more serious under a high electrical field owing to the imbalanced charge injection in PeLEDs. Concomitantly, the perovskite film will suffer from a higher electrical field increased by the accumulated-charge-induced local electrical field, dramatically accelerating the ion migration and degradation of PeLEDs. Here we construct a voltage-dependent hole injection structure consisting of a ZnO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) bilayer, which can properly adjust the hole injection according to the driving electrical field, matching with the injected electrons. As a result, the ZnO/PEDOT:PSS-containing PeLED can be operated under higher driving voltage with a higher peak brightness of 18920 cd/m, which is 84% higher than the reference device based on a PEDOT:PSS single layer. Moreover, the ZnO/PEDOT:PSS-containing PeLED delivers a much higher power efficiency than the reference device under high driving voltages.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.458685DOI Listing

Publication Analysis

Top Keywords

electrical field
20
perovskite light-emitting
8
light-emitting diodes
8
high electrical
8
perovskite film
8
hole injection
8
zno/pedotpss-containing peled
8
reference device
8
electrical
5
field
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!