Terahertz (THz) absorption spectroscopy is a powerful tool for molecular label-free fingerprinting, but it faces a formidable hurdle in enhancing the broadband spectral signals in trace-amount analysis. In this paper, we propose a sensing method based on the geometry scanning of metal metasurfaces with spoof surface polarization sharp resonances by numerical simulation. This scheme shows a significant absorption enhancement factor of about 200 times in an ultra-wide terahertz band to enable the explicit identification of various analytes, such as a trace-amount thin lactose film samples. The proposed method provides a new, to the best of our knowledge, choice for the enhancement of wide terahertz absorption spectra, and paves the way for the detection of trace-amount chemical, organic, or biomedical materials in the terahertz regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.452131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!