Background: There are currently insufficient data on the population of endometrial epithelial stem/progenitor cells in farm animals.

Objectives: With the aim of identifying a potential population of epithelial stem/progenitor cells in the porcine and bovine endometrium, this study immunohistochemically examined the expression patterns of the oestrogen and progesterone receptors, as well as that of the embryonal stem cell marker SOX2.

Methods: A total of 24 endometrial tissue samples obtained from cycling pigs (n = 12) and cows (n = 12) were included in our study. Each endometrium was divided into basal, middle and luminal portions. The percentage of marker-positive cells and the intensity of the immunoreaction in each portion of the endometrium were determined.

Results: Inverse expression patterns of SOX2 and progesterone receptors were found in both animal species throughout the oestrous cycle. Strong diffuse SOX2 expression was detected in the basal portions of the glands, while a significant decrease in positivity and a weak immunoreaction were found in the luminal two thirds of the glandular epithelium. Strong progesterone receptor expression was observed in at least 90% of glandular cells in the middle and luminal portions, whereas weak staining and significant decrease in positivity were detected in the basal portions of the glands. One oestrogen receptor expression pattern resembled that of progesterone receptors.

Conclusion: The inverse expression patterns of SOX2 and hormone (especially progesterone) receptors suggest that endometrial epithelial stem/progenitor cells represent a subset of cells that reside in the basal portions of the endometrial glands in both the bovine and porcine endometrium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297784PMC
http://dx.doi.org/10.1002/vms3.802DOI Listing

Publication Analysis

Top Keywords

expression patterns
16
epithelial stem/progenitor
16
stem/progenitor cells
16
progesterone receptors
12
basal portions
12
embryonal stem
8
stem cell
8
cell marker
8
sox2 hormone
8
cells porcine
8

Similar Publications

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Super-enhancer Activates Master Transcription Factor NR3C1 Expression and Promotes 5-FU Resistance in Gastric Cancer.

Adv Sci (Weinh)

December 2024

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Poor response to 5-fluorouracil (5-FU) remains an obstacle in the treatment of gastric cancer (GC). Super enhancers (SEs) are crucial for determining tumor cell survival under drug pressure. SE landscapes related to 5-FU-resistance are mapped to GC using chromatin immunoprecipitation-sequencing (ChIP-Seq).

View Article and Find Full Text PDF

A tripartite transcriptional module regulates protoderm specification during embryogenesis in Arabidopsis.

New Phytol

December 2024

State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.

Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.

View Article and Find Full Text PDF

Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.

Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.

View Article and Find Full Text PDF

Taking foreign language majors with experience in innovation and entrepreneurship training program (IETP) as samples, this study investigates the influence of disciplinary expertise on entrepreneurial intention. Based on the theory of planned behavior (TPB), a model was designed to examine the relationships among entrepreneurial intentions, perceived behavioral control, attitude toward entrepreneurship, subjective norms, IETP experience, foreign language self-efficacy and cultural intelligence. The data were collected through questionnaires and Partial least squares structural equation modeling (PLS-SEM) was adopted to test the hypotheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!