Motivation: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation, which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial- or time-dependent AI signals may be dampened or not detected.

Results: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing data, or dynamics AI from other spatially or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower Root Mean Square Error (RMSE) of allelic ratio estimates than existing methods. In real data, airpart identified differential allelic imbalance patterns across cell states and could be used to define trends of AI signal over spatial or time axes.

Availability And Implementation: The airpart package is available as an R/Bioconductor package at https://bioconductor.org/packages/airpart.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113279PMC
http://dx.doi.org/10.1093/bioinformatics/btac212DOI Listing

Publication Analysis

Top Keywords

allelic imbalance
12
airpart
6
data
6
allelic
5
airpart interpretable
4
interpretable statistical
4
statistical models
4
models analyzing
4
analyzing allelic
4
imbalance single-cell
4

Similar Publications

To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.

View Article and Find Full Text PDF

Multigene panel tests (MGPTs) revolutionized the diagnosis of Lynch syndrome (LS), however noncoding pathogenic variants (PVs) can only be detected by complementary methods including whole genome sequencing (WGS). Here we present a DNA-, RNA- and tumor tissue-based WGS prioritization workflow for patients with a suspicion of LS where MGPT detected no LS-related PV. Among the 100 enrolled patients, MGPT detected 28 simple PVs and an additional 3 complex PVs.

View Article and Find Full Text PDF

Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.

View Article and Find Full Text PDF

Objective: Prenatal diagnosis of fetal 13q34 microdeletion is a rare condition, which may present with abnormal fetal development, including facial dysmorphism, mental retardation, and developmental delay. We present a pregnant woman in whom the fetus presented with a 0.24-cm ventricular septal defect at 20 weeks of gestation, with fetal 13q34 (113610612-115092648) deletion.

View Article and Find Full Text PDF

Rationale: This study investigates the genetic cause of primary infertility and short stature in a woman, focusing on maternal X chromosome pericentric inversion and its impact on offspring genetic outcomes, including deletions at Xp22.33 and Xp22.33p11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!