Enzyme activity alterations have been associated with many metabolism disorders and have crucial roles in the pathogenesis of some diseases. Tyrosinase is a key enzyme in melanin biosynthesis, which is responsible for skin pigmentation to protect the skin from solar radiation. Pancreatic lipase has been considered a key enzyme for the treatment of obesity. Herein, we reported the synthesis and enzyme inhibitions of a series of sulfonates as possible tyrosinase and pancreatic lipase inhibitors. According to the calculated IC values, compound 3f (74.1±11.1 μM) and compound 3c (86.6±6.9 μM) were determined to be the best inhibitors among the synthesized compounds for the tyrosinase and pancreatic lipase enzymes, respectively. The approach yielded at extremely high level by creating very flexible structural domains for the chemically modified groups. The structural characterization of the target molecules was implemented by H-NMR, C-NMR, and HR-MS analyses. Also, molecular docking studies of the synthesized compounds with tyrosinase and pancreatic lipase enzymes were conducted using AutoDock Vina software. Additionally, the studies of the absorption distribution, metabolism, and excretion (ADME) were performed to uncover the target compounds' pharmacokinetics, drug similarities, and medicinal properties of the novel sulfonate derivatives bearing salicylaldehyde.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202200140DOI Listing

Publication Analysis

Top Keywords

pancreatic lipase
16
tyrosinase pancreatic
12
molecular docking
8
docking studies
8
novel sulfonate
8
sulfonate derivatives
8
derivatives bearing
8
bearing salicylaldehyde
8
key enzyme
8
synthesized compounds
8

Similar Publications

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

Unmasking a Rare Genetic Mutation: The Importance of Genetic Testing in Refractory Hypertriglyceridemia.

AACE Clin Case Rep

August 2024

Department of Endocrinology, Endocrine Associates of West Village, New York City, New York.

Background/objective: Genetic causes of hypertriglyceridemia like familial chylomicronemia syndrome can be overlooked in everyday practice. We report a patient with a rare genetic mutation, highlighting the importance of genetic testing for timely diagnosis and prevention of complications.

Case Report: A 45-year-old Hispanic female presented with serum triglyceride levels of 749 mg/dL, refractory to rosuvastatin 10 mg daily and omega-3 ethyl esters 2 g daily.

View Article and Find Full Text PDF

Carthamus tinctorius L. (Safflower) is widely used in traditional Japanese, Korean, Chinese, Arabian, and Persian herbal medicine to treat metabolic diseases. This study aimed to characterize C.

View Article and Find Full Text PDF

The CEL-HYB1 hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene (CELP) has been associated with chronic pancreatitis (CP). Recent work indicated that amino acid positions 488 and 548 in CEL-HYB1 determined pathogenicity. Haplotype Thr488-Ile548 was associated with CP while haplotypes Thr488-Thr548 and Ile488-Thr548 were benign.

View Article and Find Full Text PDF

A series of ten topiramate-phenolic acid conjugates (T1-T10) were synthesized, and evaluated for their pancreatic lipase inhibitory and antioxidant potentials. The design of the compounds reflected the structural attributes extracted from robust QSAR models developed for predicting the pancreatic lipase inhibition potency. Conjugate T4 competitively inhibited pancreatic lipase with IC value of 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!