High-resolution particle size and shape analysis of the first Samarium nanoparticles biosynthesized from aqueous solutions via cyanobacteria Anabaena cylindrica.

NanoImpact

Department of Physics, Institute of Integrated Naturals Sciences and Mathematics, University Koblenz-Landau, Universitätsstraße 1, D-56070 Koblenz, Germany; Materials Science, Energy and Nano-engineering Department, Mohammed VI Polytechnic University, 43150 Ben Guerir, Morocco. Electronic address:

Published: April 2022

Samarium (Sm) is one of the most sought-after rare earth metals. Price trends and dwindling resources are making recovery increasingly attractive. In this context, the use of cyanobacteria is highly promising. For Sm it was unclear whether Anabaena cylindrica produces particles through metabolically active Sm uptake. High-resolution (HR) imaging now clearly demonstrates microbe generated biosynthesis of Sm nano-sized particles (Sm NPs) in vivo. Furthermore, a simple method to determine particle size and shape with high accuracy is presented. Digital image analysis with ImageJ of HR-TEMs is used to characterize Sm NPs revealing a nearly uniform local size distribution. Assuming round particles, the overall average area size is 135.5 nm, resp. 11.9 nm diameter. In HR, where different cell sections of the same cell are averaged, the mean particle is smaller, 76.7 nm resp. 8.9 nm diameter. The reciprocal aspect ratio is 0.63. The Feret major axis ratio is calculated as shape factor, with 35% of the particles between 1.2 and 1.4. A roundness classification shows that 38% of particles are fairly round and 41% are very round. Consequently, A. cylindrica represents a suitable microorganism for possible Sm recovery and biosynthesis of roundish nano-sized particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.impact.2022.100398DOI Listing

Publication Analysis

Top Keywords

particle size
8
size shape
8
anabaena cylindrica
8
nano-sized particles
8
particles
6
high-resolution particle
4
size
4
shape analysis
4
analysis samarium
4
samarium nanoparticles
4

Similar Publications

Lignin has emerged as a sustainable alternative to fossil-based polymers in advanced materials such as photonics. However, current methods for preparing photonic lignin materials are limited by non-benign organic solvents and low production yields. In this work, we present a highly efficient process that enables the production of photonic glasses with yields ranging from 48% to 72%, depending on the size of the lignin nanoparticles obtained from herbaceous soda lignin, softwood kraft lignin, and hardwood organosolv lignin.

View Article and Find Full Text PDF

Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite.

Ind Eng Chem Res

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.

This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-AlO) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size.

View Article and Find Full Text PDF

Corn stover was used as raw material, and purification, oxalic acid treatment, oxidation treatment, and ultrasonic treatment were performed to realize the preparation of corn stover nanocellulose with low energy consumption. The effects of oxalic acid concentration (1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%) on the purity, morphology, crystalline structure and oxidation efficiency of corn stover cellulose during oxalic acid treatment were investigated. The controllable preparation of corn stover nanocellulose was achieved by changing the parameter conditions of ultrasonic treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!