Genome-wide exploration of sugar transporter (sweet) family proteins in Fabaceae for Sustainable protein and carbon source.

PLoS One

City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt.

Published: May 2022

Sugar transporter proteins (STPs) are membrane proteins required for sugar transport throughout cellular membranes. They plays an imperative role in sugar transmission across the plant and determinants of crop yield. However, the analysis of these important STPs Sugars Will Eventually be Exported Transporters (SWEET) family in legumes is still not well-documented and remains unclear. Therefore, the in-silico analysis of STPs has been performed to unravel their cellular, molecular, and structural composition in legume species. This study conducted a systematic search for STPs in Cajanus cajan using the Blastp algorithm to understand its molecular basis. Here, we performed a comprehensive analysis of 155 identified SWEET proteins across 12 legumes species, namely (Cajanus cajan, Glycine max, Vigna radiate, Vigna angularis, Medicago truncatula, Lupinus angustifolius, Glycine soja, Spatholobus suberectus, Cicer arietinum, Arachis ipaensis, Arachis hypogaea, Arachis duranensis). The amino acid composition and motif analysis revealed that SWEET proteins are rich in essential amino acids such as leucine, valine, isoleucine, phenylalanine, and serine while less profuse in glutamine, tryptophan, cysteine, and histidine. A total of four main conserved motifs of SWEET proteins are also highly abundant in these amino acids. The present study deciphered the details on primary physicochemical properties, secondary, tertiary structure, and phylogenetic analysis of SWEETs protein. Majorities of SWEET proteins (72.26%) are in stable form with an average instability index of 36.5%, and it comprises a higher fraction of positively charged amino acid Arg + Lys residues. Secondary structure analysis shown that these proteins are richer in alpha-helix (40%) than extended strand (30%) and random coil (25%), respectively. Furthermore, to infer their mechanism at a structural and functional level which play an essential roles in growth, development, and stress responses. This study will be useful to examine photosynthetic productivity, embryo sugar content, seed quality, and yield enhancement in Fabaceae for a sustainable source of essential amino acids and carbon source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106169PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268154PLOS

Publication Analysis

Top Keywords

sweet proteins
16
amino acids
12
sugar transporter
8
sweet family
8
proteins
8
fabaceae sustainable
8
carbon source
8
analysis stps
8
cajanus cajan
8
amino acid
8

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Background: Amyloid β (Aβ) deposition in the brain is a pathological hallmark of Alzheimer's disease (AD). While immunoprecipitation-mass spectrometry (IP-MS) stands out as an accurate method for quantifying blood-based Aβ peptides, its major limitations such as prolonged sample preparation, extensive analysis time, large specimen volume, and high costs, present opportunities for improvement. Consequently, we aimed to develop a novel plasma IP-MS Aβ assay that employs simplified and significantly shorter analytical procedures, along with much-reduced sample volumes.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.

View Article and Find Full Text PDF

Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function.

Food Res Int

January 2025

Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China. Electronic address:

Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!