Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoscale zero-valent iron (nZVI) has been widely applied in the environmental field to degrade organic pollutants. The potential risk posed from nZVI on crop species is not well understood and is critical for sustainable application in the future. In this study, maize (Zea mays L.) plants were cultivated in field soils mixed with nZVI at 0, 50, and 500 mg/kg soil for four weeks. Upon exposure to 500 mg/kg nZVI, ICP-MS results showed that Fe accumulated by roots and translocated to leaves was increased by 36% relative to untreated controls. At 50 mg/kg, root elongation was enhanced by 150-200%; at 500 mg/kg, pigments, lipid peroxidation, and polyphenolic levels in leaves were increased by 12, 87 and 23%, respectively, whereas the accumulation of Al, Ca, and P were decreased by 62.2%, 19.7%, and 13.3%, respectively. A gas chromatography-mass spectrometry (GC-MS) based metabolomics analysis of maize roots revealed that antioxidants and stress signaling-associated metabolites were downregulated at 50 mg/kg, but were upregulated at 500 mg/kg. At 50 mg/kg, the content of glutamate was increased by 11-fold, whereas glutamine was decreased by 99% with respect to controls. Interestingly, eight metabolic pathways were disturbed at 50 mg/kg, but none at 500 mg/kg. This metabolic reprogramming at the lower dose represented potential risks to the health of exposed plants, which could be particularly important although no phenotypic impacts were noted. Overall, metabolites analysis provides a deeper understanding at the molecular level of plant response to nZVI and is a powerful tool for full characterization of risk posed to crop species as part of food safety assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.impact.2021.100336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!