Comparative life cycle assessment of high-yield synthesis routes for carbon dots.

NanoImpact

Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environmental and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal. Electronic address:

Published: July 2021

Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.impact.2021.100332DOI Listing

Publication Analysis

Top Keywords

carbon dots
24
synthesis route
16
environmental impacts
12
carbon precursors
12
carbon
10
life cycle
8
cycle assessment
8
high-yield synthesis
8
future studies
8
treatment carbon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!