The prevalence and fatality rates with fungal biofilm-associated infections urgently need to develop targeted therapeutic approaches to augment the action of antifungal drugs. This study developed amphotericin B-loaded PLGA-PEG nanoparticles (AmB-NPs) with AD1 aptamer conjugation on its surface via an EDC/NHS technique. Their high nuclease resistance of the conjugation was confirmed by PAGE gel electrophoresis. The targeting and toxicity of AD1-AmB-NPs in the subcutaneous C. albicans infection model were evaluated. AD1-AmB-NPs can bind to different morphological forms(including yeast cells, germ tubes, hyphae) of C. albicans biofilms and extracellular matrix material. Low-frequency and low-intensity ultrasound (LFU, with a fixed frequency of 42 kHz, at the intensity of 0.30 W/cm for 15 min) significantly promoted permeability of the biofilm and allowed AD1-AmB-NPs into the deepest layers of the biofilm. After 7 days of treatment, the combination treatment of AD1-AmB-NPs and LFU, kills at least 99% of the biofilm fungal population in vivo comparison with ultrasound alone or AD1-AmB-NPs alone, and returned to normal subcutaneously. Our data suggest that the combined strategy of AD1-AmB-NPs and ultrasound treatment selective delivered of therapeutic drugs to the infection site and exhibited significant synergistic antifungal effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.impact.2020.100275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!