Roughness Volumes: An Improved RoughMob Concept for Predicting the Increase of Molecular Mobility upon Coarse-Graining.

J Phys Chem B

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, D-64287 Darmstadt, Germany.

Published: May 2022

The reduced number of degrees of freedom in a coarse-grained molecular model compared to its parent atomistic model not only makes it possible to simulate larger systems for longer time scales but also results in an artificial mobility increase. The RoughMob method [Meinel, M. K. and Müller-Plathe, F. . 2020, 16, 1411.] linked the acceleration factor of the dynamics to the loss of geometric information upon coarse-graining. Our hypothesis is that coarse-graining a multiatom molecule or group into a single spherical bead smooths the molecular surface and, thus, leads to reduced intermolecular friction. A key parameter is the molecular roughness difference, which is calculated via a numerical comparison of the molecular surfaces of both the atomistic and coarse-grained models. Augmenting the RoughMob method, we add the concept of the region where the roughness acts. This information is contained in four so-called roughness volumes. For 17 systems of homogeneous hydrocarbon fluids, simple one-bead coarse-grained models are derived by the structure-based iterative Boltzmann inversion. They include 13 different homogeneous aliphatic and aromatic molecules and two different mapping schemes. We present a simple way to correlate the roughness volumes to the acceleration factor. The resulting relation is able to a priori predict the acceleration factors for an extended size and shape range of hydrocarbon molecules, with different mapping schemes and different densities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c00944DOI Listing

Publication Analysis

Top Keywords

roughness volumes
12
roughmob method
8
acceleration factor
8
coarse-grained models
8
molecules mapping
8
mapping schemes
8
roughness
5
molecular
5
volumes improved
4
improved roughmob
4

Similar Publications

High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Electrical & Computer Engineering Department, Montana State University, Bozeman, Montana 59717, United States.

Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector.

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.

View Article and Find Full Text PDF

Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.

View Article and Find Full Text PDF

3-Dimensional topographic enamel surface changes after different debonding techniques for aligner attachments: a micro-CT study.

Clin Oral Investig

January 2025

Faculty of Dentistry, Department of Orthodontics , Hacettepe University, Sihhiye, Ankara, 06100, Turkey.

Introduction: To evaluate topographic changes of enamel surface in 3-dimensional after different debonding methods of aligner attachments formed with 2 different composite resins.

Methods: Vertical rectangular attachments were created on 88 premolar teeth and divided into two composite resin groups (Group 1:flowable, Group 2:packable) (N = 44). These were then divided into two subgroups (N = 22) using different debonding methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!